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Abstract 
 
 

Nanotechnology promises to be the defining technology of the 21st century.  At an annual 

investment of $1B, it provides significant contributions to manufacturing, medicine, 

energy conservation, and the environment.  Nanoparticles are structures with at least one 

dimension in the 1 to 100 nanometer (nm) range.  DoD and US Air Force interest in 

aluminum nanoparticles (AL NPs) stems from its ability to enhance combustion jet fuel, 

thus increasing fuel efficiency.  The addition of AL NPs to JP-8 may pose a unique 

dermal hazard to aircraft maintenance workers.  There is no published data on AL NP 

toxicity effects on human skin.  This research used in vitro techniques to determine the 

cytotoxicity of AL NPs, sized 50, 80, and 120 nm, on human keratinocytes.  AL NPs at 

concentrations 10 – 10,000 μg/mL and 24-hour exposure did not have a negative effect 

on cell viability, as assessed by membrane leakage, metabolic function, and reactive 

oxygen species generation.  Keratinocyte expression of proinflammatory interleukins-1α 

and -8 was quantified to determine if AL NPs induced precursor cytokines for irritant 

contact or sensitizer response dermatitis.  After 24-hour exposure to AL NPs, 

keratinocytes expressed significant concentrations of IL-8, 24 – 100 times greater than 

IL-1α, indicating that AL NPs may induce sensitizer response dermatitis. 
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IN VITRO TOXICITY OF ALUMINUM  

NANOPARTICLES IN HUMAN KERATINOCYTES 

 
 

I.  Introduction 
 

1.1  Background 

 “Nanomaterials are a diverse class of small-scale (<100 nm) substances formed 

by molecular-level engineering to achieve unique mechanical, optical, electrical, and 

magnetic properties” (Tsuji and others, 2006:42).  Commercial and military interest, 

research, and application of nanotechnology continue to grow, far outpacing studies into 

its risk to human health and the environment.  Department of Defense interest in 

nanotechnology stems from its application in electronics, munitions, fuels, 

electrochemical power, and surface coatings.  Aluminum nanoparticles (AL NPs) have a 

role in many of these applications, but there have been few toxicological studies 

conducted to assess the potential risk to human health.   

 NASA has proven that the addition of AL NPs to JP-8 produces the same fuel 

efficiency in pulse detonation engines as non-metallized JP-8, but without the need to add 

oxygen to the combustion process (Palaszewski and others, 2006:16).  The Office of 

Naval Research and the US Navy Research Laboratory are exploring the use of 

aluminum nanoparticles in lithium batteries to improve the performance of the polymer 

electrolytes (Carlin and others, 2006:28).  The US Navy is using composites containing 

aluminum and titanium on high-speed reduction gears sets, installed in 80-ton air 

conditioning units, to repair rather than replace the worn out gears at an annual savings of 

$500K (Kabacoff, 2006:41).  The US Army is conducting research on the use of AL NPs 
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in explosives, ammunition, and missile propulsion.  Research in nanoscale energetic 

materials has led to the development of aluminum based metastable intermolecular 

composites (MIC).  MICs are a significant improvement over traditional explosives as the 

rate of energy released from a MIC reaction can be tailored by manipulating the size of 

the components (Miziolek, 2006:44).   

 The addition of AL NPs to JP-8 may pose a new dermal hazard to workers who 

perform jet engine maintenance and fuel cell repair on aircraft in the US Air Force 

inventory.  Concerns regarding dermal exposure to AL NPs include direct cell toxicity, 

accumulation in the skin, metabolism of particles into smaller components, or increased 

particle toxicity after ultra violet irradiation (Tsuji and others, 2006:44).   

1.2  Problem Statement 

 Despite the increased use and manufacture of nanoparticles there is very little 

toxicology information available regarding the effects of nanoparticles on human skin.  

The use of AL NPs in electronics, fuel additives, and surface coatings presents a potential 

occupational hazard to workers in the manufacturing and application of these products.  

Occupational dermatitis accounts for approximately 20 percent of all occupational 

illnesses in the United States; therefore, the effect of nanoparticles, specifically 

aluminum, on human skin requires investigation. 

1.3  Research Objectives:   

 The purpose of this study was to address the following questions in order to 

evaluate the effects of AL NPs on human keratinocytes.   

  1.  Are AL NPs (50, 80, and 120 nm) toxic to human keratinocytes? 

  2.  Do AL NPs induce reactive oxygen species? 
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  3.  Do AL NPs induce an inflammatory response in keratinocytes?  

  4.  Can AL NPs be classified as a skin irritant or sensitizer? 

1.4  Research Focus 

 This study focused on the effects of the in vitro exposure of AL NPs, in three 

sizes and at various concentrations, on human keratinocytes.   

1.5  Methodology 

 In vitro methods were used in this study.  Human keratinocytes were cultured in 

plastic flasks, transferred to cell culture plates, and exposed to various concentrations of 

AL NPs, in three different sizes (50, 80, and 120 nm) for 24 hours.  Cell viability and the 

proinflammatory response of the keratinocytes were studied.   

 Cell viability of the keratinocytes, after 24 hours of exposure to various 

concentrations of AL NPs, was determined by quantifying cell membrane leakage and 

mitochondrial function through colorimetric techniques.  Cell membrane leakage was 

quantified by measuring the reaction of lactate dehydrogenase and the assay enzyme 

conversion of resazurin to resorufin (TB306, 2007:2).  Cell proliferation was measured 

by quantifying the conversion of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) to formazan 

(TB169, 2005:1) by functioning mitochondria.  The reactive oxygen species (ROS) 

concentration was measured, using dischlorodihydrofluorescein diacetate, to determine if 

ROS were the mechanism that induced cell death. 

 Keratinocyte proinflammatory response, after 24-hour exposure to various 

concentrations of AL NPs, was quantified using colorimetric ELISA (Enzyme-Linked 
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Immuno Sorbent) immunoassays.  Colorimetric cytokine kits produced by R & D 

Systems®, Inc., were used to quantify the proinflammatory cytokines IL-1α and IL-8.   

1.6  Assumptions/Limitations 

      1.  The properties of AL NPs may change after dry powder is suspended in  

           keratinocyte exposure media. 

      2.  All keratinocytes dosed with the AL NP suspension were exposed to the  

           same concentration of AL NPs through out the entire incubation period, and  

           that the method of exposure was appropriate 

      3.  Keratinocytes account for 90 percent of the cells in the human epidermis 

          and provide an adequate model for in vitro studies. 

      4.  AL NP concentrations used in reactive oxygen species and interleukin 

           experiments were chosen from MTS and LDH assay results, and not based  

           upon particle deposition data. 

      5.  The results of in vitro studies may be used to anticipate the results of in vivo  

           experimentation. 

1.7  Implications 

 The art and science of industrial hygiene is the anticipation, recognition, 

evaluation, and control of occupational hazards.  As application of nanotechnology has 

outpaced research of its potential health risks, new occupational hazards may have been 

introduced into the workplace.  This research will help to prioritize further dermal 

toxicity studies with an aim to developing safe work practices.   
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1.8  Document Overview 

 This thesis contains five chapters.   

Chapter Two:  Provides a literature review of occupational health issues related to 

nanotechnology, toxicity of elemental aluminum, protective mechanisms of skin, 

description of dermatitis, and skin cell response to toxic agents. 

Chapter Three:  Description of methods used to collect data. 

Chapter Four:  Presentation and analysis of data. 

Chapter Five:  Explanation of data and identification of further research requirements. 
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II.  Literature Review 
 

2.1  Background 

 This chapter provides a literature review on the nanotechnology industry, and the 

heath and safety issues related to this industry.  It also includes a description of the 

human skin, a description of the types of dermatitis, and the cellular response to 

inflammation.  This review shows that toxicity in keratinocytes can be characterized by 

cell viability and morphology.  Current information on the toxicity of elemental 

aluminum is also included. 

2.2  Nanotechnology Industry  

 Nanotechnology, the development and application of nanoparticles, 

subassemblies, and nano-based products, promises to exceed the impact of the industrial 

revolution and is projected to become a $1 trillion market by 2015 (Nel and others, 

2006:622).  National Science Foundation experts claim that nanotechnology may become 

the defining technology of the 21st century by driving economic growth, and providing 

significant contributions to manufacturing, medicine, energy conservation, and the 

environment (Danoi, 2007:90).  Per The National Nanotechnology Initiative December 

2007 Strategic Plan, the US is committed to “stimulating the discovery and innovation” 

of nanotechnology.  To this end, the President’s 2006 budget included over $1 billion for 

nanotechnology research and development.   

 2.2.1  Industrial Application on Nanoparticles 

 “With nanotechnology it is possible to create materials from building blocks the 

size of atom clusters, which exhibit enhanced electronic, magnetic, optical, and chemical 

properties…far greater potential than just the inherent ‘economy of geometry’ of 
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miniaturization” (Lines, 2008:243).  Nanosized particles are structures with at least one 

dimension in the 1 to 100 nanometer (nm) range.  Nanoparticles are either manufactured 

for commercial use or occur naturally in the environment.  The term “ultrafine” is 

reserved for natural and unintentional nanosized particles.  Examples include viruses, 

particulates formed by forest fires and volcanic eruption, combustion engine by-products, 

metal fumes, and polymer fumes.  Nanoparticle and nanomaterial are terms used to refer 

to manufactured nanosized powders, fullerenes, buckyballs, and etcetera.  The theories of 

classical and quantum mechanics no longer apply when materials are nanosized and a 

variety of unexpected properties are possible, to include transparency, hydrophobicity, 

photoluminescence, toughness and hardness, chemical sensing, and bioavailability (Line, 

2008:243).  Commercial application of nanoparticles requires such characteristics as 

small size, narrow size distribution, and low levels of agglomeration. 

 The current and future applications of nanotechnology include a vast array of 

industry sectors spanning medicine, plastics, energy, electronics, and aerospace.  Due to 

length of the list, only a few applications and available consumer products are described 

to provide the reader with an understanding of how the industry is growing. 

 Bound, nanosized materials are incorporated into consumer products to improve 

their functionality.  The application of nano-thin polymer coatings to automotive glass 

and sunglasses reduces glare and improves scratch resistance.  Hydrophobic, nanosized 

materials are added to the weave of cotton cloth to create stain resistant, wrinkle-free 

clothing.  Carbon nanotubes are added to materials used to produce sporting equipment, 

such as bats, golf clubs, and tennis rackets to make them lighter and stronger.  Silver 

nanoparticles are embedded into fabric to produce odor-free, antibacterial clothing 
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(Maney, 2004).  EverClean Technologies, Inc., developed a solution that, when applied to 

roofs and windows, creates a polymer shield that protects against biological growth and is 

self cleaning (Danoi, 2007:90).  The solution contains titanium dioxide and peroxotitanic 

oxidizing agents that form a micro-thin crystalline coating when applied to a surface.  

The titanium dioxide peroxotitanic uses sunlight to decompose organic materials, and the 

crystal coating reduces surface tension, allowing rain to wash the dirt off the surface.  

Unbound, nanosized materials are also used in consumer products.  Nanosized titanium 

dioxide is used in sunscreens and cosmetics to increase their ability to block ultra violet 

radiation.  Flex-Power, a pain reliever cream, uses nanosized capsules that contain 

common, over the counter pain relievers to deliver medicine through the skin (Danoi, 

2007:88). 

 2.2.2  Uses of Aluminum Nanoparticles  

 Aluminum and aluminum oxide nanoparticles are currently used in scratch- and 

abrasive-resistant coatings on products such as sunglasses, car finishes, and flooring 

(Sass, 2007:10). 

 In October 2006, NASA and the Glenn Research Center published a joint report 

on the use of metallized gel in jet fuel (JP-8).  AL NPs, sizes 60 to 100 nm, were added to 

JP-8 and combusted in a pulse detonation engine.  Research was conducted on JP-8 with 

an aluminum loading of 4.85 (13.25 grams of AL) to 24.68 (83.58 grams of AL) percent 

weight.  The study proved that an AL NP loading of 12 to 18 percent (by weight) allowed 

the JP-8 to combust without the addition of oxygen.  Adding metallized gel to JP-8 

reduces dependence on oxygen for ignition, fuel slosh, leakage, and size of the aircraft 

(Palaszewski and others, 2006:16).   
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 The Office of Naval Research and the US Navy Research Laboratory are 

exploring the use of aluminum nanoparticles in lithium batteries to extend the battery life 

cycles and to improve electrolyte performance (Carlin and others, 2006:28).  Lithium 

alloys are used in high-capacity anodes.  However, the alloying metals fragment and lose 

capacity, reducing the life of the battery.  Nanoscale composites containing aluminum 

undergo reversible lithium alloying over many cycles with minimal loss of capacity 

(Carlin, 2006:27).  AL NPs disrupt the polymer-chain organization and create lithium ion 

conducting pathways.  The US Navy is using composites containing aluminum and 

titanium on high-speed reduction gears sets, installed in 80-ton air conditioning units, to 

repair rather than replace the worn out gears at an annual savings of $500K (Kabacoff, 

2006:41).   

 The US Army is conducting research on the use of AL NPs in explosives, 

ammunition, and missile propulsion.  Research in nanoscale energetic materials has led to 

the development of aluminum based metastable intermolecular composites (MIC).  MICs 

are a significant improvement over traditional explosives as the rate of energy released 

from a MIC reaction can be tailored by manipulating the size of the components 

(Miziolek, 2006:44).   

2.3  Nanoparticle Health and Safety Issues  

 The primary heath issue associated with the advent of nanotechnology is the 

unknown risk the manufacture and use of nanoparticles pose to the worker.  Nanosized 

materials do not exhibit the same characteristics as their macrosized (size > 100 nm) 

cousins, creating an unknown occupational health risk that is difficult to assess and 

quantify using traditional industrial hygiene methods and equipment.  The health and 
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safety challenges associated with nanotechnology include (1) the development of 

instruments that accurately measure the emission of nanoparticles into air and water; (2) 

development and validation of methods to evaluate the toxicity of nanoparticles; (3) 

development of models that predict the impact of nanoparticles on human health and the 

environment; and (4) the creation of robust systems to evaluate and track the health and 

environmental impact of nanoparticles over their entire cycle (Maynard, 2006:268-269).   

 2.3.1  Nanoparticle Characteristics 

 Manufactured nanosized materials pose a unique hazard due to their complex 

nature (Oberdorster and others, 2005:823).  Because the primary characteristic 

contributing to nanoparticle cytotoxicity is unknown, the following properties must be 

characterized when conducting cytotoxicity studies:  size, shape, state of dispersion, 

chemical and physical properties, surface area, and surface chemistry. 

 Proper characterization of nanoparticles used in cytotoxicity studies is required to 

ensure that the toxicity results are reproducible, and to understand which properties 

contribute to the biological effects.  The size and shape of the nanoparticle influences 

toxicity by affecting particle deposition in the body, cell inflammation responses, and 

particle clearance from the body.  Nanoparticle dispersion refers to the number of 

particles that agglomerate versus the number of single particles in the exposure media.  

Highly disperse particles do not tend to agglomerate and have a greater potential for 

cellular uptake.  Characterization of the chemical and physical properties of the 

nanoparticles is important, as these properties may be different from the properties of the 

same material in conventional sizes.  Surface area should be measured because as the size 

of the particles in a given mass of material decreases, the total surface area of the particle 
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increases, thus a greater proportion of a particle’s atoms are available on its surface.  An 

increase in atoms on the surface increases the number of reactions the particle can have 

with its environment.  Finally, surface chemistry must be analyzed as coatings and 

surface charges may affect how the particle interacts with its environment. 

 2.3.2  Toxicity of Aluminum by Absorption 

 The widespread use of aluminum compounds in consumer products such as 

antacids, astringents, aspirin, food additives, and antiperspirants (ATSDR, 2006) has 

resulted in a continuous exposure to low concentrations of aluminum.  Traditionally, 

elemental aluminum (Al+3) has not been considered a human ingestion nor dermal 

hazard.  However, in the 1980’s, physicians noted that patients undergoing long-term 

dialysis exhibited aluminum-induced bone and brain diseases caused by the aluminum 

concentrations found in medications and the water used in dialysis equipment (Alfrey and 

others, 1980:1509).  This suggests that aluminum is toxic to humans once it crosses the 

epithelium and accumulates in concentrations great enough to induce injury.   

 The human body does not metabolize aluminum into less hazardous components.  

Aluminum is removed from the body by healthy kidneys that filter enough aluminum 

from the blood to minimize its accumulation and toxicity.  In people with malfunctioning 

kidneys, aluminum is a systemic toxin that induces bone and brain diseases.  Aluminum 

accumulation in bone is caused by the disruption of phosphate and calcium absorption, 

weakening the bone, causing breaks, and forming lesions.  The accumulation of 

aluminum in the brains of dialysis patients produces encephalopathy or “dialysis 

dementia”.  Encephalopathy is an irreversible, degenerative brain disease that progresses 

from speech disorders, to myoclonic jerks, and, finally, to dementia.  The average 
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aluminum concentrations found in the bone and brain tissues of renal-failure patients, 

who died of dialysis-induced encephalopathy, were eight (bone) and six (brain) times 

greater than the average concentrations found in people who had died with healthy 

kidneys (Alfrey and others, 1980:1510).  While it is not clear if aluminum is a cause or a 

result of Alzheimer’s disease, aluminum has been found in the brain plaque of 

Alzheimer’s patients.  Aluminum is also suspected as a cause of Parkinsonism dementia 

(Toimela and others, 2006:74).  These diseases suggest that if the aluminum 

concentration in the blood exceeds the kidney filtration capacity, aluminum becomes a 

systemic toxin in humans. 

 2.3.3  Toxicity of Aluminum Nanoparticles 

 Little research has been published on the toxicity of aluminum nanoparticles.  The 

US Air Force Research Laboratory (AFRL) performed cell toxicity studies using AL NPs 

due to the potential use of these particles in electronics, energetics, and jet fuel.  From 

January 2003 through June 2004, AFRL investigated the cytotoxicity of AL NPs, size 30 

nm, on mouse keratinocytes (HEL-30).  AFRL performed in vitro studies to evaluate 

mitochondrial function, cell membrane integrity, and cellular morphology of HEL-30 

cells exposed for 24 hours to AL NPs at concentrations ranging from 10 to 250 µg/mL.  

Per their report In Vitro Toxicity of Nanoparticles in Mouse Keratinocytes and 

Endothelial Cells, AL NPs at 30 nm did not induce cell death or changes to the cell.  

 In the 2005 article, “In Vitro Cytotoxicity of Nanoparticles in Mammalian Germ-

Line Stem Cells”, Braydich-Stolle and others reported that AL NPs, size 30 nm, reduced 

mitochondrial function and induced cell membrane leakage in mouse spermatogonial 

stem cells at very low concentrations (less than 10 ug/mL).   
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 In the 2007 article, “Cellular Interaction of Different Forms of Aluminum 

Nanoparticles in Rat Alveolar Macrophages”, Wagner and others investigated the cellular 

interaction of rat alveolar macrophages with aluminum and aluminum oxide 

nanoparticles, 24-hour exposure to sizes 30 – 120 nm and concentrations 25 – 250 

ug/mL.  Macrophage cytotoxicity was determined using in vitro methods to evaluate 

mitochondrial function, cell membrane integrity, and phagocytosis.  Wagner reported that 

aluminum oxide nanoparticles had little to no effect on mitochondrial function, cell 

membrane integrity, and phagocytosis.  However, AL NPs produced a reduction in 

mitochondrial function (at 100 and 250 μg/mL), no impact on cell membrane integrity, 

and a decrease in phagocytosis (25 μg/mL).  Wagner reported that cytotoxicity became 

more pronounced as the concentration increased and that the size of the particles did not 

influence toxicity. 

2.4  Occupational Skin Disease  

 For 2006, the total number of cases of occupational skin diseases was 41,400, 

accounting for 18 percent of the 228,000 reportable illnesses (US Department of Labor, 

Jan 2008).  The Bureau of Labor Statistics defines skin diseases as “illnesses involving 

the worker's skin that are caused by work exposure to chemicals, plants or other 

substances”.  Examples of occupational skin disease include contact dermatitis, eczema, 

rashes caused by primary irritants and sensitizers or poisonous plants, oil acne, friction 

blisters, chrome ulcers, and inflammation of the skin.  Aluminum is not designated as an 

occupational skin hazard; however, aluminum compounds in underarm antiperspirants 

have been shown to cause rashes (ATSDR, 2006).   
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 2.4.1  Skin Structure 
  
 The human skin is comprised of two layers; epidermis is the outer layer and 

dermis is the inner layer.  Comprised of dead keratinocytes and body oil, the stratum 

corneum is the outer most layer of the epidermis and acts as the body’s primary 

protective barrier.  Keratinocytes, melanocytes, Langerhans cells, Merkel cells, and 

sensory nerves form the epidermis, with keratinocytes accounting for 90 percent of the 

epidermal layer (see Figure 1).  There is a protective barrier at the junction of the two 

layers.  Hair follicles, sebaceous glands, and sweat (apocrine and eccrine) glands residing 

in the dermis layer may compromise the effectiveness of the protective barrier.  The 

dermis makes up 90 percent of the skin and, through capillaries located at the dermal 

epidermal junction, supplies blood to the epidermis.  Capillaries also supply blood to the 

hair follicle bulbs and the secretion cells of the eccrine glands.  Figure 2 shows the 

structure of the epidermis and dermis. 

 M
Reprint permission granted by 

ark Saba, MA, Yale University 
Yale ITS Media and Technology Services

3DScience at en.wikipedia 
Reprint permission CC-BY-2.5. 

 

 

 

 

 

 

 
Figure 1 (left).  Structure of Epidermis (Mark Saba MA, current as of 10 Jan 07)  

Figure 2 (right).  Structure of Human Skin (3DScience, 2007) 
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 There are three routes in which foreign materials can enter the body through the 

skin:  material interaction with cells (material uptake or disruption of cellular processes), 

absorption through spaces between epidermal cells, or penetration through hair follicles 

and sweat gland orifices.  Uncompromised skin cells protect the body by metabolizing 

materials that cross the stratum corneum before reaching susceptible tissue.  Diseases and 

injuries decrease the ability of the skin to protect the body from absorbing materials 

through the skin.  Fat-soluble chemicals can damage the stratum corneum by dissolving 

body oils, aiding in the penetration of materials through hair follicles and sweat gland 

orifices.   

 2.4.2  Dermatitis  

 Dermatitis is defined as an inflammation of the skin.  Acute skin inflammation 

can occur from exposure to chemicals or as a response to friction or trauma.  The body 

uses the inflammation process to repair tissue, and to remove foreign material and 

necrotic cells.  Chemical induced inflammation may be caused by contact with a skin 

irritant, such as an acid or base, or as a immunologic reaction to a sensitizer, such as 

nickel or latex.  Both irritant contact and sensitizer response dermatitis are characterized 

by itching, redness, and skin lesions (Marzulli and Maibach, 2004:231).  At the cellular 

level, the reaction can be characterized through identification of the types of cytokines 

secreted by keratinocytes. 

 2.4.3  Irritant Contact Dermatitis 

 Irritant contact dermatitis (ICD) can be acute or delayed and occurs as a cellular 

response to an adequate concentration of a direct-acting cytotoxic agent (Marzulli and 

Maibach, 2004:231).  ICD is a non-immune reaction, limited to the exposed area of the 
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skin, and is typically reversible.  It may occur after a single exposure or after multiple 

exposures, even if the agent is removed from the skin after each exposure.  The extent of 

the cellular response is dependent on the susceptibility of the exposed individual and the 

thickness of the skin at the site of exposure (Weltfriend and others, 2004:183).   

 Once an ICD agent disrupts the skin barrier and damages the epidermis, injured 

keratinocytes initiate an inflammatory response by releasing proinflammatory cytokines, 

which are proteins used in cell-to-cell communication (Weltfriend and others, 2004:208).  

Proinflammatory cytokines include interleukin one alpha (IL-1α) and tumor necrosis 

factor alpha (TNF-α).  TNF-α shares some of the same functions as IL-1α and aids in the 

activation of immune cells.  IL-1α, stimulates endothelial cells and fibroblasts to release 

mediators that increase the flow of plasma, recruit leukocytes to the injured cells, and 

initiate cell repair at the site of inflammation (Gregus and Klaassen, 2001:70).   

 2.4.4  Sensitizer Response Dermatitis 

 Sensitizer response dermatitis (SRD) may also be acute or delayed and occurs as a 

cellular response to an adequate concentration of a immunologic cytotoxic agent 

(Marzulli and Maibach, 2004:231).  As with ICD producing agents, the concentration that 

induces SRD may be reached by a single exposure or by multiple exposures that occur 

over time.  SRD can develop in two ways.  The first occurs when a SRD agent disrupts 

the skin barrier, damages the epidermis, and induces an inflammatory response.  In the 

second, the agent initiates an immunological sensitivity without inducing a dermal 

reaction. 

 Sensitization occurs when the SRD agent is carried to the lymph nodes by 

Langerhans cells, where they interact with T-lymphocytes and produce sensitized T-
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lymphocytes (Marzulli and Maibach, 2004:231).  The sensitized T-lymphocytes develop 

an irreversible, immunological memory.  This immunological memory will induce a 

more pronounced inflammation response to subsequent exposures, at the exposure site 

and, possibly, in other areas of the skin, even when the agent concentration is less than 

the initial concentration that induced the sensitization.   

 At the cellular level, SRD agents induce keratinocytes to release proinflammatory 

cytokines IL-1α, TNF-α, and IL-8.  Unlike ICD agents, SRD agents stimulate 

keratinocytes to release elevated concentrations of IL-8.  IL-8 belongs to the family of 

cytokines called chemokine; cytokines characterized by cysteine residues, expressed by 

keratinocytes in the presence of IL-1α and TNF-α (Feliciani and others, 1996:306).  IL-8 

is a chemotactic cytokine that signals neutrophils, white blood cells that kill and digest 

foreign material, and T-lymphocytes to the cell to begin phagocytosis.   

 2.4.5  Aluminum Skin Exposure 

 Although the Occupational Safety and Health Administration (OSHA) does not 

classify aluminum as an occupational skin hazard, aluminum absorption and skin rashes 

have been linked to consumer products containing aluminum compounds. 

 Dermal absorption of aluminum has been reported after application of underarm 

deodorant (Becaria, 2002:311).  Two adult volunteers were dermally exposed to one 

application of 0.4 mL of 21 percent aluminum chlorate for seven weeks.  The results 

showed that the average AL absorption was 3.6 µg after two weeks.  (Flarend and others, 

2001:167).   

 Veine and others investigated three cases of children who were unsuccessfully 

treated for vaccine-site rashes after they had received vaccines that contained aluminum 
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hydroxide.  Their investigation revealed that all three children also used toothpaste that 

contained aluminum oxide.  When the toothpaste was changed to one that did not contain 

aluminum, the rashes of all three children responded to treatment within two weeks.  

Each of the families agreed to resume using the toothpaste containing aluminum oxide.  

In two cases, the child’s rash returned within four days.  Veine and others concluded that 

aluminum is a mild, but rare allergen. 

 2.4.6  Nanoparticle Skin Exposure 

 Concerns regarding dermal exposure to nanoparticles include direct cell toxicity, 

accumulation in the skin, metabolism of particles into smaller components, or increased 

particle toxicity after ultra violet irradiation (Tsuji and others, 2006:44).  Permanent 

accumulations of nanosized silica have been found in the dermis of the feet of patients 

with Elephantiasis, a condition caused by parasitic obstructions in the lymphatic system 

of the lower legs (Hoet and others, 2004:9).  Toxicologists have shown that 1 μm 

fluorescent beads can migrate through flexed and broken epidermis where they 

accumulate in the dermis layer (Oberdorster and others, 2005:834).   

2.5  Cell Viability  

 In vitro analysis of necrosis and cell proliferation is used to determine the 

viability of cells after exposure to an agent.  The source of cell death determines which 

path the process will follow until the result is necrosis or apoptosis.   

 Apoptosis or programmed cell death is a “controlled physiologic process of 

removing individual components of an organism without destruction or damage to the 

organism” (Fink and Cookson, 2005:1908).  Apoptosis occurs in the normal turnover of 

healthy tissue or from exposure to a cytotoxic agent.  Cells contain caspases, enzymes 
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that when activated, initiate apoptosis.  During apoptosis, the cell partitions DNA, 

cytoplasm, intact mitochondria, and other organelles into bundles bound by a membrane 

(Wyllie, 2008:3).  In vivo, the bundles are phagocytized by macrophages and 

inflammation does not occur.  The bundles may swell and leak during in vitro 

experiments where macrophages are absent, causing secondary necrosis and the 

mitochondria in the bundles remain functional (Wyllie, 2008:3).  Autophagy occurs in 

vivo when apoptotic bundles and cellular debris is phagoytized by macrophages and 

neighboring cells.  Pyroptosis is the form of cell death that occurs when the cell is 

invaded by an infectious agent.   

 

 

 

 

 

 

 

 

 

  
Figure 3.  Pathways of Cell Death.  Copyright by American Society  

for Microbiology, published by Fink and Cookson, 2005:1909. 
 

 2.5.1  Necrosis  

 Necrosis describes non-apoptic, accidental cell death, with an uncontrolled release 

of cell material that may induce inflammation in the surrounding tissue (Fink and 
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Cookson, 2005:1910).  Cytotoxic agents, such as bacteria, viruses, and chemicals can 

induce cell membrane leakage.  Cell membrane damage can be caused by direct contact 

with the agent or from damage to cellular DNA.  Oncosis is the cell death pathway that 

occurs when cellular DNA is damaged.  The repair of cellular DNA begins a cascade of 

events that damage the cell’s ability to maintain homeostasis.  As the cell works to repair 

its DNA, it increases is energy consumption that depletes its energy stores.  This 

uncontrolled use of its energy stores causes the cell to die.  As the cell dies, the integrity 

of its membrane is compromised, and the ion pumps that maintain ion balance within the 

cytoplasm fails.  The imbalance of ions causes the cell to swell and rupture, or cytoplasm 

to leak through the membrane.  Release of the cytoplasm and its contents may cause 

inflammation in the surrounding tissue.   

 Lactate dehydrogenase (LDH) is contained in the cytoplasm of eukaryotic cells; 

therefore, cell membrane leakage can be quantified by measuring the colorimetric 

reaction of LDH with an assay enzyme that converts a dye, resazurin, to resorufin 

(TB306, 2007:2).  The concentration of LDH is inversely proportional to the number of 

living cells. 

 2.5.2  Cell Proliferation  

 In eukaryotic cells, mitochondria are essential to cell activity.  Reduced 

mitochondrial function indicates that a cell is not proliferating.  Reduced cell 

proliferation may be the result of apoptosis, autophagy, oncosis, or pyroptosis.  

Mitochondria in healthy, living cells convert MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) to formazan 
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(TB169, 2005:1).  Therefore, the concentration of formazan is directly proportional to the 

number of living cells. 

 2.5.3  Reactive Oxygen Species 

 The formation of reactive oxygen species (ROS) and the release of metal ions are 

the two main mechanisms by which nanoparticles cause cell death (Maysinger and 

others, 2006:12).   

 Reactive oxygen species in the form of hydrogen peroxide and superoxide 

radicals are the result of normal cellular processes.  They are generated by electrons that 

leak from enzymes used in the mitochondria electron transport chain (Becaria and others, 

2002:314) and by the cell’s metabolic processes.  Oxidative stress occurs when the 

concentration of the ROS exceeds the cell’s antioxidant defenses (Xia and others, 

2006:1795).  Cell damage occurs when the ROS are converted to hydroxyl radicals, 

which can cause cell necrosis or induce apoptosis by damaging cell DNA, cell organelles, 

or cell membranes.  The cell damage caused by the ROS may induce inflammation in 

surrounding tissue.   

 Nanoparticle induced ROS are created when electrons transfer from the 

nanoparticle to the cell’s oxygen molecules or when metal ions disrupt the cell’s 

oxidation/reduction (redox) signaling.  Fluorescent probes are used in in vitro studies to 

identify the species and quantify the concentration of the ROS.  The fluorescent probe, 

dischlorodihydrofluorescein diacetate, is used to perform initial ROS screening as it can 

detect and aid in quantifying all forms of ROS (Maysinger and others, 2006:13). 
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2.6  Interleukin Expression  

 “The ability to accurately predict the skin irritating and/or sensitizing potential of 

newly synthesized chemicals remains a key element in assessing the safety of those 

products”  (Coquette and others, 1999:868).  If a chemical migrates through the stratum 

corneum and reaches the living cells in the epidermis, it may damage the integrity of the 

keratinocyte membrane, and induce cellular production and/or release of 

proinflammatory cytokines.  Proinflammatory cytokines are key signaling agents that 

lead to in vivo skin irritation or sensitization.  As a result, human keratinocyte expression 

of these cytokines may be an effective screening model for classifying agents as irritants 

or as sensitizers.   

 IL-1α is synthesized by the mitochondria (Coquette and others, 1999:875) and IL-

8 is synthesized when the nuclear factor-kappa beta is activated by protein kinase C 

(Chabot-Fletcher and others, 1994:509).  IL-1α initiates the inflammation process when 

released from the cells.  IL-1α may be released when the cell membrane is compromised 

or when the cell is stimulated.  In addition to starting the inflammation process, IL-1α 

stimulates the release of secondary mediators, including IL-8.  IL-8 is a chemotactic 

cytokine that signals neutrophils and T-lymphocytes to the cell to begin phagocytosis.   

 Coquette and others performed in vitro studies of cytokine expression by human 

keratinocytes exposed to chemicals known to induce ICD and SRD.  The study included 

quantification of intercellular and extracellular IL-1α and IL-8 concentrations, and the 

assessment of cell viability by MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide.  MTT is an alternative to MTS and evaluates cell viability 

in the similar manner as MTS.  In their research, Coquette and others quantified the 
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extracellular concentrations of IL-1α and IL-8 using Quantikine® immunoassay kits (R & 

D Systems® Inc., Abingdon, UK).  The results of their 2003 study showed that 

keratinocytes expressed both IL-1α and IL-8 when dosed, for 20-hours, with either an 

irritant or a sensitizer at concentrations ranging from 125 to 4000 µg/mL.  They reported 

that IL-8 expression by keratinocytes exposed to irritants was very low.  In contrast, 

irritants induced expression of high levels of IL-1α.  Keratinocytes dosed with sensitizers 

produced the inverse cytokine profile, high IL-8 and low IL-1α expression.  For irritants, 

they found that as cell death increased (reduced MTT results), the released concentration 

of IL-1α increased.  For sensitizers, there was no correlation between the concentrations 

of released IL-1α and IL-8, and cell viability.  They also reported that the ratio of IL-8 to 

IL-1α concentrations for irritants ranged from 0.2 to 0.7 (extracellular) and 0.1 to 0.3 

(intracellular), and for sensitizers 8.4 to 41.0 (extracellular) and 1.3 to 7.1 (intracellular).  

Coquette and others concluded that the assessment of cell viability coupled with the 

measurement of IL-1α and IL-8 expression is a potential in vitro method for classifying 

irritant and sensitizer agents.   
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III.  Methodology 
 

3.1  Introduction 

 The goal of this study was to determine if AL NPs induced cell death, generated 

reactive oxygen species, and inflammation in human keratinocytes.  Included in this 

research was the characterization of AL NPs suspended in keratinocyte (HaCaT) 

exposure media.  All research was performed using in vitro methods.  Before each 

experiment, cells were prepared in two steps.  In the first step, cells were seeded and 

grown for 24 hours.  The second step consisted of exposing the cells to AL NPs, at 

various concentrations, for 24 hours.  This section describes the assumptions, laboratory 

equipment, nanoparticles, and the experiments used to gather the data. 

3.2  Assumptions 

 Several assumptions were made at the beginning of this study. 

      1.  The properties of AL NPs may change after dry powder is suspended in  

           keratinocyte exposure media. 

      2.  All keratinocytes dosed with the AL NP suspension were exposed to the  

           same concentration of AL NPs through out the entire incubation period, and  

           that the method of exposure was appropriate 

      3.  Keratinocytes account for 90 percent of the cells in the human epidermis 

          and provide an adequate model for in vitro studies. 

      4.  AL NP concentrations used in reactive oxygen species and interleukin 

           experiments were chosen from MTS and LDH assay results, and not based  

           upon particle deposition data. 

      5.  The results of in vitro studies may be used to anticipate the results of in vivo  
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           experimentation. 

3.3  Cell Line 

 The HaCaT cell line consists of immortalized adult human keratinocytes 

developed by the German Cancer Research Center (DKFZ, Heidelberg, Germany).  

HaCaT keratinocytes do not produce tumors when passaged/grown indefinitely.  When 

transplanted onto nude mice, HaCaT keratinocytes differentiate into epidermal tissue by 

forming squame cells and stratifying into epidermal layers (Boukamp and others 

1998:761 and 770).  Immortalized keratinocytes may be grown indefinitely in cell media 

without changes to morphology and replication rate.  HaCaT keratinocytes behave like 

normal keratinocytes in terms of growth and differentiation, therefore, this cell line is a 

suitable in vitro model for dermal cytotoxicity studies.  This cell line does not include 

Langerhans cells, which play an important role in the study of immune response and 

cytokine production.   

3.4  Cell Culture 

 Cells were grown in RPMI-1640 cell media containing HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid), sodium pyruvate, L-glutamine, glucose, 

and bicarbonate (purchased from ATCC®, Manassas VA), and supplemented with 10 

percent fetal bovine serum (FBS).  To prevent bacterial growth, one percent of 

penicillin/streptomycin solution (Sigma-Aldrich Chemical Company, St. Louis, MO) was 

added to the cell growth media.  Exposure media (growth media minus the FBS) was 

used during nanoparticle dosing to maintain cell viability while discouraging cell 

proliferation.  In the ROS experiments, the RPMI-1640 in the cell growth and exposure 

media was replaced with F-12 Ham with Kaighn’s modification (Ham’s F-12K) media 
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(Sigma-Aldrich Chemical Company, St. Louis, MO).  Ham’s F-12K did not contain 

phenol red, which interferes with ROS measurement.  For morphology and assay 

experiments, the cells were seeded in 6- or 96-well plates at concentrations ranging from 

50K to 300K cells per well.  Keratinocytes were grown in a humidified incubator at 37°C 

± 0.3°C and 3-5 percent CO2 atmosphere.  For instructions used for cell maintenance, see 

Appendix A.  

3.5  Cell Count and Plating 

 An adequate number of cells per mL were required in order to perform accurate 

assay experiments.  Cell counting was performed by pipetting 10 μL of high 

concentration cell suspension on to a hemocytometer.  The cells located on each corner 

grid were counted.  The average number of cells per 10 µL was converted to cells per 

mL.  See Appendix B for detailed instructions. 

3.6  Nanoparticles 

 The nanoparticles (NovaCentrix™ Inc., Austin, TX) used in these experiments 

were aluminum with diameters of 50, 80, and 120 nm.  These nanoparticles were 

originally obtained in 2005.  Each sized AL NP, in powder form, was weighed and added 

to HaCaT exposure media to create stock solutions of 1 mg/mL and 10 mg/mL.  Before 

cell dosing, each stock solution was sonicated for approximately 20 seconds to reduce 

particle agglomeration.  Cell dosing concentrations were calculated based on the required 

total volume (dosing and exposure media) for either the 6- or the 96- well plates.  For 

example, in a 96-well plate the addition of 20 µL (to each well) of 10 mg/mL dosing 

stock and 180 µL (to each well) of HaCaT exposure media produced a 1000 µg/mL AL 

NP dose to the cells in the well.  In the ROS experiments, the AL NP dosing stock 
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solution was made in the same manner as the dosing stocks used throughout the rest of 

this study, except that Ham’s F-12K exposure media was used in place of RPMI-1640. 

3.7  SpectraMax®190 and Gemini XPS 

 The spectrometers, SpectraMax 190® and Gemini XPS (Molecular Devices™ 

Inc., Sunnyvale, CA) microplate readers, were used to measure light absorbance or 

emission, respectively, for data quantification in LDH, MTS, ROS, and interleukin assay 

experiments.  SOFTmax® Pro (Molecular Devices™ Inc., Sunnyvale, CA) software was 

used to run the spectrometers and present the data electronically. 

3.8  LDH Assay 

 The LDH assay was used to determine cell membrane integrity after AL NP 

exposure.  A 96-well plate was seeded with 50K keratinocytes per well and incubated for 

24 hours.  The growth media was then removed and the cells were dosed with AL NP 

stock (four wells per concentration per nanoparticle size) and exposure media.  For the 

experiment (zero) control wells, the growth media was removed and 200 µL of exposure 

media was added.  The plate was placed in the incubator.  After 24 hours, the plate was 

removed from the incubator.  Being careful not to pipette the nanoparticles, 50 μL of 

supernate was transferred from each well to a clean 96-well plate, and the LDH assay 

experiment was performed.  See Appendix C for experiment procedures.  Each LDH 

experiment was completed in triplicate.  Membrane integrity was assessed for cells 

exposed to AL NP concentrations ranging from 10 to 10,000 µg/mL.   

3.9  MTS Assay 

 The MTS assay was used to determine the effects of AL NPs on cell 

growth/proliferation.  A 96-well plate was seeded with 50K keratinocytes per well and 
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incubated for 24 hours.  The growth media was then removed and the cells were dosed 

with AL NP stock (four wells per concentration per nanoparticle size) and exposure 

media.  For experiment control wells, the growth media was removed and 200 µL of 

exposure media was added.  The plate was placed in the incubator.  After 24 hours, the 

plate was removed from the incubator, the cell supernate was removed, and each well 

was rinsed three times with one percent phosphate buffered solution (1X PBS).  HaCaT 

exposure media and MTS reagent were added to each well, and the plate was incubated 

for four hours.  When the centrifuge was available, the plate was placed in a centrifuge 

for six minutes, and 100 μL was transferred from each well to a clean plate.  When the 

centrifuge was not available, 100 μL was transferred from each well to a clean plate.  

These steps were performed to ensure that any remaining AL NPs would not cause false 

results.  See Appendix D for experiment procedures.  Each MTS experiment was 

performed in triplicate.  Cell proliferation was assessed for cells exposed to AL NP 

concentrations ranging from 10 to 10,000 µg/mL.   

 MTS results at AL NP concentrations greater than 2000 μg/mL were greater than 

the zero control, which suggested that there might be nanoparticle interference.  A second 

MTS experiment was performed, in triplicate, for 0, 2000, 4000, 6000, 8000, and 10,000 

μg/mL and sizes 50, 80, and 120 nm.  Spectrofluorometer readings were taken after rinse, 

but before plates were placed in the centrifuge, after the plates were placed in the 

centrifuge for six minutes, and after centrifuge and transfer of 100 μL to a clean plate. 

3.10  Reactive Oxygen Species 

 Oxidative stress of keratinocytes exposed to AL NPs was evaluated by measuring 

the fold-increase of the ROS produced by the cells.  Keratinocytes were grown in a 96-
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well plate for 24 hours.  Before dosing with AL NPs, a fluorescent probe was applied 

under light controlled conditions.  After dosing cells with AL NPs (concentrations 10, 

100, 500, 1000, and 2000 μg/mL for sizes 50, 80 and 120 nm), the ROS was measured at 

zero, one, two, four, six, and twenty-four hours.  Each experiment was performed in 

triplicate.  For details on the ROS experiment procedures, see Appendix E. 

3.11  Cell Morphology Experiment 

 A cell morphology experiment was performed on keratinocytes exposed to AL 

NPs and talcum powder at concentrations ranging from 2000 to 10,000 μg/mL to 

determine if the nanoparticles or media turbidity caused reduced mitochondrial activity.  

Talcum powder was chosen for this experiment because it is neither nanosized nor 

cytotoxic. 

 Keratinocytes were seeded at a density of 300K cells per well onto four 6-well 

plates and grown until cells were 100 percent confluent (24-hours).  After the growth 

media was removed from all plates, one well from each of the three plates was dosed 

with AL NPs at concentrations of 0, 2000, 4000, 6000, 8000, or 10,000 μg/mL (for each 

nanoparticle size.  At the same concentrations, talcum powder dosing stock was added to 

each well of the fourth plate.  After incubation for 24 hours, the dosing stock was 

removed, and each well was rinsed three times with 1XPBS.  Change in cell growth was 

studied using an Olympus® 1x71 inverted microscope (Olympus® Corp, Tokyo, Japan) 

equipped with a Retiga 4000R (QImaging® Inc., Surrey BC, Canada) camera and 

QCapture Pro™ (QImaging® Inc., Surrey BC, Canada) software.   

 The pH of the AL NP dosing stock, talcum powder dosing stock, and cell 

supernate (after 24-hour exposure) was measured to determine if pH might be responsible 
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for cell death at dosing concentrations greater than 2000 ug/mL.  Four 6-well plates were 

seeded and dosed in the same manner as the cell morphology experiment.  Before dosing 

the keratinocytes, the pH of the AL NP and talcum stocks were measured with pH strips 

(Whatman® pH Indicator Strips, Whatman® Inc., Florham Park, NJ).  After 24 hours of 

exposure to the dosing stock, the pH of each well was measured. 

3.12  Interleukin Assays 

 Human keratinocyte external expression of IL-1α and IL-8, after 24 hour 

exposure to AL NPs at concentrations 0, 10, 100, 1000, and 2000 μg/mL, was quantified 

using Quantikine® immunoassay kits (R & D Systems® Inc., Minneapolis, MN).  

Keratinocytes were seeded, at 300K cells per well, onto three 6-well plates.  After 24 

hours of incubation, the HaCaT growth media was removed from the wells, the cells were 

dosed with AL NPs, exposure media, and 125 μl of LPS (final concentration of 25 ug/mL 

per well), and returned to the incubator for 24 hours.  LPS is a component of the outer 

membrane of gram-negative bacteria and is used to stimulate cells during in vitro studies.  

Two zero controls were used, one with LPS and one without LPS.  After the second 

incubation, the cell supernate was transferred from each well to sterile, 15 mL conical 

tubes.  To minimize AL NP interference, the conical tubes were placed in a centrifuge for 

15 minutes at 1200 RPM.  To minimize bias, both zero controls were placed in the 

centrifuge.  To ensure that interleukins remained in suspension, each conical tube was 

placed on a vortex mixer for 15 seconds before transfer to the assay 96-well plate.  See 

Appendices F and G for experiment procedures. 
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3.13  Aluminum Nanoparticle Characterization 

 Characterization of size, dispersion, and chemical and physical properties of AL 

NPs suspended in solution, and the surface chemistry of nanoparticles in powder form 

was performed during this study.   

 3.13.1  Characterization of AL NPs in Solution 

 Dynamic light scattering (DLS) and laser Doppler velocimetry (LDV) techniques 

were used to characterize AL NPs in solution.  The Zetasizer® Nano ZS™ (Malvern® 

Instruments Inc., Westborough, MA) instrument used a 4 mW He-Ne 633 nm laser and 

an electric field generator to analyze samples of AL NPs suspended in exposure media.  

AL NPs at a concentration of 25 μg/mL were suspended, for 24 hours, in deionized water 

and exposure media.  Samples were transferred to a square cuvette for DLS and a 

Malvern® Clear Zeta Potential cell for LDV.  The instrument software used the intensity, 

volume, and density measurements to calculate the average nanoparticle size.  PDI 

(polydispersity index) is a measure from 0 to 1 of the range of sizes present in the 

nanoparticle suspension, with 0 meaning monodisperse and 1 meaning polydisperse.  

Characterization of AL NPs in solution included size, dispersion, zeta potential, and 

electrophoretic mobility. 

 3.13.2  Characterization of AL NP Powder 

 The size and shape of the AL NPs in dry powder form was not performed during 

this study as it had been characterized during a previous research project.  Data on 

surface area and surface chemistry of AL NPs were obtained from the manufacturer, 

NovaCentrix™ Inc., Austin, TX.   
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 Surface chemistry characterization was performed to determine if the particles 

had oxidized since the 2005 purchase.  X-ray powder diffraction (XRD) was conducted 

using a Philips PW1270 Diffractometer (PANalytical Inc., Westborough, MA) to identify 

layers in the AL NP by measuring the d-spacing, perpendicular space between two 

planes, and the relative intensity, intensity of the scattered angle.  An x-ray beam was 

aimed at the AL NP, the relative intensity and angle of the scattered rays was measured, 

and the data was used to calculate the d-spacing.  The diffraction data was compared 

against a database maintained by the International Centre for Diffraction Data.  To 

determine if a carbon coating was present on the AL NPs, the amount, in percent weight, 

of carbon, hydrogen, and nitrogen was measured using a Leco CHNS 932 elemental 

analyzer (Leco® Corp., St. Joseph, MI).  A sample of AL 50 was placed in a capsule, 

dropped into the Leco furnace, and heated to 1000°C until the sample was combusted.  

An infrared detector was used to quantify the amount of carbon, hydrogen, and nitrogen. 

3.14  Statistical Analysis 

 At a minimum, all LDH, MTS, and ROS experiments were performed in 

triplicate, and the results were presented as mean ± standard deviation.  Concentrations 

were calculated for the LDH, MTS, and ROS data using Microsoft® Excel® (Microsoft® 

Corp., Seattle, WA).  The LDH, MTS, and ROS experimental data were analyzed by 

ANOVA using Excel®.  Statistical significance was accepted at a level of p value ≤ 0.05.   

 Interleukin-1α and -8 concentration response curves were constructed using four-

parameter logistic (4-PL) curve-fit by SigmaPlot® (SYSTAT® Software Inc., San Jose, 

CA).  The interleukin experimental data were analyzed by ANOVA using SigmaPlot® 

and statistical significance was accepted at a level of p value ≤ 0.05. 
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 The F-test was used to determine if there was a significant difference in the 

quantities of interleukins expressed by keratinocytes in the presence vs. absence of LPS.  

The F-test for the interleukin experimental data was performed by ANOVA (single 

factor) using Excel® and at a 95 percent confidence limit.  Table 1 summarizes the 

experimental hypotheses and the statistical analyses used to test the hypotheses. 

Table 1:  Hypotheses and Statistical Tests 
 

Assay Experiments Performed 
 

Statistical Analysis Performed 

LDH:  Necrosis Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 100% (zero control) 
H1:  µ ≠ 100% 
 

MTS:  Cell proliferation Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 100% (zero control) 
H1:  µ ≠ 100% 
 

ROS:  Oxidative stress Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 1 (zero control) 
H1:  µ ≠ 1 
 
 

IL-1α:  Proinflammatory cytokine 
 
and 
 
IL-8:  Neutrophil and T-
lymphocyte attractant 

IL-1α Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 6.24 pg/mL (zero control) 
H1:  µ ≠ 6.24 pg/mL  
 
Il-8 Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 192 pg/mL (zero control) 
H1:  µ ≠ 192 pg/mL 
 
The following were performed on the IL-1α and IL-8 sample data: 
 
Zero Control F-test:  95% confidence limit 
Ho:  s1

2 = s2
2;  s1

2 = zero control w/ LPS; s2
2 = zero control w/o LPS 

H1:  s1
2 ≠ s2

2 

. 
AL NP Size (nm) F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2;  s1
2 = AL 50, s2

2 = AL 80, and s3
2 = AL 120  

H1:  s1
2 ≠ s2

2 ≠ s3
2 

 
Dosing Stock Conc. (µg/ml) F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2 = s4
2;  s1

2 = 10, s2
2 = 100, s3

2 = 1000, and s4
2 = 2000 

H1:  s1
2 ≠ s2

2 ≠ s3
2 ≠ s4

2 
 

Ratio IL-8 to IL-1α AL NP Size (nm) F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2;  s1
2 = AL 50, s2

2 = AL 80, and s3
2 = AL 120  

H1:  s1
2 ≠ s2

2 ≠ s3
2 

 
Dosing Stock Conc. (µg/ml) F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2 = s4
2;  s1

2 = 10, s2
2 = 100, s3

2 = 1000, and s4
2 = 2000 

H1:  s1
2 ≠ s2

2 ≠ s3
2 ≠ s4

2 
Note:  Student’s t-test, two-tailed performed.  Statistically significant results were further evaluated to ensure validity.
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IV.  Data Description and Analysis 
 

4.1  Introduction 

 The data collected from the research methods described in chapter III is presented 

in this chapter.  Table 2 summarizes the experiments conducted to address the research 

objectives presented in chapter I.  

Table 2.  Research Questions and Experiments Performed 
 

Research Objectives 
 

Experiments Performed* 

Are AL NPs (50, 80, and 120 nm) toxic to human 
keratinocytes? 

LDH:  Necrosis 
MTS:  Cell proliferation 
 

Do AL NPs induce reactive oxygen species? ROS:  Oxidative stress 
 

Do AL NPs induce an inflammatory response in 
keratinocytes?  

LDH:  Necrosis 
ROS:  Oxidative stress 
IL-1α:  Proinflammatory cytokine 
 

Can AL NPs be classified as a skin irritant or sensitizer? IL-8:  Neutrophil and T-lymphocyte attractant 
Ratio of IL-8 to IL-1α 

*Cell morphology experiments were performed to determine if cell death was caused by AL NPs or turbidity of dosing 
stock.  Characterization of AL NPs in dosing stock and dry powder form was conducted. 
 
 
4.2  Keratinocyte Viability Data 

 The results of the cell viability experiments using LDH, MTS, and ROS assays 

showed that AL NPs did not induce cell death in human keratinocytes. 

 4.2.1  LDH Assay Results 

 Cell membrane leakage of human keratinocytes dosed with AL NPs at 

concentrations ranging from 10 to 10,000 µg/mL and exposed for 24 hours did not occur 

(see Figures 4 and 5).  The concentration of LDH leaked by keratinocytes dosed with AL 

NPs did not exceed the concentration of LDH leaked by keratinocytes exposed to 0 

µg/mL AL NPs (zero control).  The statistically significant (using Student’s t-test) data 

were not likely the result of AL NP exposure because the difference between the mean 
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LDH result for the zero control and the experimental data was not large, the sample data 

set was too small to prove that it contained outliers, and the variability within the sample 

sets was small (Patten, 2005:119).  Further evidence of this was demonstrated by the fact 

that cell membrane leakage was not seen in keratinocytes dosed with concentrations 

greater than the statistically significant concentration.   
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Figure 4.  Membrane Leakage in Keratinocytes, AL NP Concentration 10 – 400 μg/mL.   
Percent LDH increase after 24-hour exposure to AL NPs.  * indicates doses that produced  

LDH results that are significantly different from the zero control, p value ≤ 0.05 
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Figure 5.  Membrane Leakage in Keratinocytes, AL NP Concentration 1100–10,000 μg/mL.   
Percent LDH increase after 24-hour exposure to AL NPs.  * indicates doses that produced  

LDH results that are significantly different from the zero control, p value ≤ 0.05 



 4.2.2  MTS Assay Results 

 Suppression of mitochondrial function in human keratinocytes, due to 24-hour 

exposure to AL NPs at concentrations of 10 to 10,000 µg/mL, did not occur (see Figures 

6 and 7).  The quantity of MTS transformed to formazin by keratinocytes dosed with AL 

NPs was not significantly lower than MTS transformed to formazin by the zero control 

keratinocytes.  At very high concentrations (> 2000 µg/mL), the MTS results were 

significantly greater than the zero control results.  An experiment was performed to 

determine if the rise in MTS results were caused by artifact AL NPs.  The results showed 

that there was a statistically significant (p value ≤ 0.05) difference between the two 

scenarios:  rinse, no centrifuge, aliquot, and rinse, centrifuge, aliquot.  After the MTS 

results for keratinocytes dosed with AL NP concentrations > 2000 µg/mL were corrected 

for nanoparticle fluorescence, the MTS results indicated that high concentrations of AL 

NPs decreased keratinocyte proliferation.  Correcting the MTS results for fluorescence 

removed any random bias that may have resulted from the inconsistent use of the 

centrifuge.  However, the results of cell morphology experiments (see paragraph 4.3) 

indicate that decreased cell proliferation was not caused by the nanoparticles, but by the 

turbidity of the dosing stock.  The statistically significant (using Student’s t-test) data 

were not likely the result of AL NP exposure because the difference between the mean 

MTS result for the zero control and the experimental data was not large, the sample data 

set was too small to prove that it contained outliers, and the variability within the sample 

data sets was small (Patten, 2005:119).  Further evidence that AL NPs did not reduce cell 

proliferation was demonstrated by the fact that a decrease in mitochondrial function was 
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not seen in keratinocytes dosed with concentrations greater than the statistically 

significant concentration. 
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Figure 6.  Cell Proliferation in Keratinocytes, AL NP Concentration 10 – 400 μg/mL.  
Percent MTS decrease after 24-hour exposure to AL NPs.  * indicates doses that produced  

MTS results that are significantly different from the zero control, p value ≤ 0.05 
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Figure 7.  Cell Proliferation in Keratinocytes, AL NP Concentration 1100 – 10,000 μg/mL.   
Percent MTS decrease after 24-hour exposure to AL NPs.  * indicates doses that produced 

 MTS results that are significantly different from the zero control, p value ≤ 0.05 
 
 
 
 



 4.2.3  ROS Assay Results 
 
 The keratinocyte generation of the ROS during a 24-hour exposure to AL NPs at 

concentrations 10, 100, 500, 1000, and 2000 μg/mL was not significant (see Figure 8).  

Although cell death occurred at concentrations > 2000 µg/mL, ROS experiments were 

not performed for those concentrations because the turbidity of the dosing stock vs. the 

AL NPs was the cause of the decrease in cell proliferation.  The concentrations of ROS 

generated by keratinocytes exposed AL NPs were not statistically significant (p value > 

0.05) when compared to the ROS concentration generated by keratinocytes exposed to 0 

µg/mL AL NPs (zero control).  Student’s t-test was performed to compare the ROS data 

generated by AL NP size, by exposure time, and by concentration of dosing stock against 

the zero control, the results of all were not statistically significant (p value > 0.05). 
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Figure 8.  Summary of Reactive Oxygen Species.  Generation of ROS from keratinocytes  
after 24-hour exposure to AL NPs.  H2O2 used as positive control. 

 
 

4.3  Keratinocyte Morphology Results 

 Pictures were taken of keratinocytes after 24-hour exposure to AL NPs or talc 

using an Olympus1x71 inverted microscope at 10x1.6 magnification (see Figures 9 and 10).  
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The blank spaces in the cell morphology pictures, in comparison to the 100 percent 

confluent cells in the zero controls (A), represent cell death that occurred when 

keratinocytes were dosed with AL NPs or talc at concentrations 2000, 4000, 6000, 8000, 

and 10,000 µg/mL. 

 
 

B C

D E F

A  
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 9.  Keratinocyte Morphology, AL NP Concentration.  A)  zero control, 0 µg/mL,  
B)  80 nm at 2000 µg/mL, C)  120 nm at 4000 µg/mL, D)  50 nm at 6000 µg/mL,  

E)  80 nm at 8000 µg/mL, and F)  120 nm at 10,000 µg/mL, Olympus1x71 inverted  
microscope, 10x1.6 magnification 
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Figure 10.  Keratinocyte Morphology, Talc Concentration.  A)  zero control, 0 μg/mL,  
B)  2000 μg/mL, C)  4000 μg/mL, D)  6000 μg/mL, E)  8000 μg/mL, and F)  10,000 µg/mL.   

Olympus 1x71 inverted microscope, 10x1.6 magnification 
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 MTS was performed to verify if the blank spaces represented dead cells.  The 

MTS results for keratinocytes dosed with talc showed that there was a significant drop in 

cell proliferation (see Figure 11).  The pH measurements for the AL NP and talc dosing 

stocks, the exposure media, unexposed cells in exposure media, and cells supernate with 

nanoparticles (after 24-hour exposure) were 8.  Since there was no change, pH did not 

contribute to cell death. 
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Figure 11.  Cell Proliferation in Keratinocytes, AL NP and Talc Concentration 2000 – 10,000 μg/mL.   
Percent MTS decrease after 24-hour exposure to AL NPs. * indicates doses that produced MTS  

results that are significantly different than the zero control, p value ≤ 0.05 
 

 Characterization of talc particle size, its zeta potential, and its electrophoretic 

mobility in solution was performed using DLS and LDV (see Table 3 for results).  The 

mean particle size of the talc suspended in exposure media (after 24 hours) was 2600 nm, 

greater than 100 nm, and was not a nanosized material.  Talc suspended in exposure 

media agglomerated to an average size that was 15 percent larger than talc particles 

suspended in distilled water.  The polydispersity index (PDI) for the talc suspended in 
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distilled water and exposure media was 1, indicating that the size of the particles 

dispersed in these solutions were very diverse. 

 Zeta potential and electrophoretic mobility are a measure of the stability of the 

particle in suspension (see paragraph 4.5.1 for more details).  The talc particles suspended 

in distilled water (for 24 hours) were unstable and likely to agglomerate because the zeta 

potential was less than ± 30 mV (Wagner and others, 2007:7357).  The zeta potential and 

electrophoretic mobility of talc suspended in exposure media could not be measured 

because the high salt concentrations of the RPMI cause corrosion of the sample chamber 

electrodes. 

 

Table 3.  Characterization of Talc in Solution  
Particle DLS LDV pH 

 
mean 

diameter  
(nm) 

PDI zeta potential 
ζ (mV) 

electrophoretic 
mobility μ 

(μm·cm·V-1·s-1) 
 

 

*Talc  
(in solution for 24 hours) 
     DI H2O 
     RPMI w/ 1% pen/strep 
 

 
 

2220 
2600 

 
1 
1 

 
 

-23.1 

 
 

-1.81 

 
 
 

8 

Measured at concentration 25 μg/mL, maximum concentration allowed for method.  *Solution at 25 °C. 
 

4.4  Keratinocyte Interleukin Expression Data 

 Interleukin-1α and -8 extracellular expressions by keratinocytes were quantified 

using R & D Systems®, Inc., ELISA immunoassay kits.   

 4.4.1  IL-1α Extracellular Expression 

 The F-test (FCalc < FCritical) proved, with a 95 percent confidence, that there was no 

statistical difference in the concentration results of the two IL-1α zero controls (with and 

without LPS).  Because the data from the two zero controls is virtually the same, it is not 
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likely that the LPS induced the extracellular expression of IL-1α in the controls  Using 

Student’s t-test, all IL-1α results proved statistically significant (p value ≤ 0.05) when 

compared with the IL-1α zero control (see Figure 12).   
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Figure 12.  Results of Extracellular IL-1α Expression.  IL-1α expressed after 24-hour exposure to  
AL NPs.  * indicates IL-1α results that are significantly different than the IL-1α results produced  

by  zero control, p value ≤ 0.05 (data used in developing graph not corrected for zero control) 
 

 4.4.2  IL-8 Extracellular Expression 

 The F-test (FCalc > FCritical) proved, with a 95 percent confidence, that there was 

statistical difference in the results of the two IL-8 zero controls (with and without LPS).  

Because the concentration of IL-8 is dramatically higher in the LPS zero control it is 

likely that the LPS aided the IL-1α in the extracellular expression of IL-8.  Using 

Student’s t-test, all IL-8 results, except AL 50 at 10 µg/mL, proved to be statistically 

significant (p value ≤ 0.05) when compared with the LPS zero control (see Figure 13).  

The calculated p value for the AL 50 at 10 µg/mL data set was 0.179.  The data set for 
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AL 50 at 10 µg/mL was too small to prove that it contained outliers and may have been 

the reason that the IL-8 results were not statistically significant (p value > 0.05).   
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Figure 13.  Results of Extracellular IL-8 Expression.  IL-8 expressed after 24-hour exposure to  
AL NPs.  * indicates IL-8 results that are significantly different than the IL-8 results produced 
 by zero control, p value ≤ 0.05 (data used in developing graph not corrected for zero control) 

 
 

 4.4.3  Comparison of IL-1α and IL-8 Results 

 Table 4 is a summary of the MTS percent reduction, IL-1α and IL- 8 results, and 

the ratio of IL-8 to IL-1α.  Statistical analysis (ANOVA, Single Factor) of the IL-1α and 

IL-8 concentrations expressed by each AL NP size indicated that the data, with 95 

percent confidence, is statistically equal (FCalc < FCritical).  However, statistical analysis 

(ANOVA, Single Factor) of the IL-1α and IL-8 concentrations associated with each 

dosing concentration indicates that the data, with 95 percent confidence, is statistically 

different (FCalc > FCritical).   
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Table 4.  MTS Percent Reduction and Extracellular Interleukin Concentration 
Particle, 

Concentratio
n (μg/mL) 

MTS % 
Reduction ± 

Std Dev 

Mean 
IL-1α 

(pg/mL 

Correcteda 

Mean 
IL-1α 

(pg/mL) 

Mean  
IL-8 

(pg/mL) 
w/LPS 

Correctedb 

Mean 
IL-8 

(pg/mL) 

Ratioc 

IL-8 / IL-1α 

AL 50, 10 105.93  
± 6.34 

7.76 
± 0.59 

1.52 272 
± 91 80 52.3 

AL 50, 100 110.53  
± 11.55 

11.95 
± 0.64 

5.70 687 
± 78 495 86.8 

AL 50, 1000* 100.86 
± 3.11 

9.34 
± 0.74 

3.09 408 
± 70 216 69.9 

AL 50, 2000 94.21  
± 2.73 

9.33 
± 0.59 

3.09 286 
± 13 94 30.3 

AL 80, 10 105.89  
± 10.55 

8.20 
± 0.18 

1.95 330 
± 8 138 70.8 

AL 80, 100 101.60  
± 0.79 

15.82 
± 0.78 

9.58 670 
± 81 478 49.9 

AL 80, 1000* 98.65 
± 13.19 

9.67 
± 0.21 

3.42 329 
± 67 137 40.0 

AL 80, 2000 91.35  
± 11.32 

9.94 
± 1.06 

3.70 311 
± 10 119 32.1 

AL 120, 10 97.69  
± 14.08 

6.97 
± 0.22 

0.73 225 
± 13 33 44.6 

AL 120, 100 97.08  
± 11.97 

10.51 
± 0.91 

4.27 620 
± 51 427 100.2 

AL 120, 1000* 97.82 
± 2.85 

11.82 
± 0.19 

5.57 407 
± 56 215 38.5 

AL 120, 2000 81.35  
± 10.79 

8.87 
± 0.23 

2.62 256 
± 6 64 24.5 

*MTS results for AL NP concentration of 1100 μg/mL 
aCorrected mean IL-1α results = IL-1α results minus 6.24 (zero control) 
bCorected mean IL-8 results = IL-8 (w/LPS) minus 192 pg/mL (zero control w/ LPS) 
cRatio of corrected means 

 Figure 14 contains two graphs plotting the ratio of IL-8 to IL-1α against AL NP 

size, and the ratio against AL NP concentration.  Statistical analysis (ANOVA, Single 

Factor) of the ratio of IL-8 to IL-1α by each AL NP size indicated that the data, with 95 

percent confidence, is statistically equal (FCalc < FCritical).  However, statistical analysis 

(ANOVA, Single Factor) of the ratio of IL-8 to IL-1α by each dosing concentration 

indicates that the data, with 95 percent confidence, is statistically different (FCalc > 

FCritical).   
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Figure 14.  Ratio of IL-8 to IL-1α.  By AL NP size (left).  By AL NP dosing stock concentration (right).   
 

 
4.5  Aluminum Nanoparticle Characterization Results   

 Characterization of size, dispersion, and chemical and physical properties was 

conducted for particles suspended in exposure media.  The surface chemistry of particles 

in dry powder form was also performed.   

  4.5.1  Characterization of AL NPs in Solution 

  Characterization of nanoparticle size, its zeta potential, and its electrophoretic 

mobility in solution was performed using DLS and LDV (see Table 5 for results).  AL 

NPs suspended for 24 hours in exposure media and in distilled water agglomerated, and 

formed particles that were greater than 100 nm.  The mean agglomerated particle size of 

the AL NPs suspended in exposure media ranged from 755 – 959 nm.  AL NPs 

suspended in exposure media agglomerated to sizes 53 (AL 120) – 67 (AL 50) percent 

larger than the sizes of the agglomerated particles in the distilled water.  The PDI for all 

three nanoparticles indicated that there was not a variety of size ranges present in the 

distilled water and exposure media suspensions.   
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Table 5.  Characterization of AL NPs in Solution 
Particle DLS LDV pH 

 
mean 

diameter  
(nm) 

PDI zeta potential 
ζ (mV) 

electrophoretic 
mobility μ 

(μm·cm·V-1·s-1) 
 

*AL 50 nm 
(in solution for 24 hours) 
     DI H2O 
     RPMI w/ 1% pen/strep 
 

 
 

316 
959 

 
0.241 
0.339 

 
 

-18.2 

 
 

-1.42 

 
 
 

8 

*AL 80  
(in solution for 24 hours) 
     DI H2O 
     RPMI w/ 1% pen/strep 
 

 
 

291 
755 

 
0.223 
0.309 

 
 

-21.7 

 
 

-1.7 

 
 
 

8 

*AL 120  
(in solution for 24 hours) 
     DI H2O 
     RPMI w/ 1% pen/strep 

 
 

378 
806 

 
 

0.322 
0.342 

 
 

-26.2 

 
 

-2.05 

 
 
 

8 
Measured at concentration 25 μg/mL, maximum concentration allowed for method.  *Solution at 25 °C. 

 

 Zeta potential (surface charge) was calculated from the measured electrophoretic 

mobility of the particle.  Electrophoretic mobility was the surface electrical charge of the 

particle in relation to its movement within fluid in which it was suspended (Zeta 

Potential, 2008:3).  The zeta potential is used to categorize the stability of a particle based 

on its ability to remain in solution.  AL NPs suspended in the distilled water were 

unstable and likely to agglomerate because the zeta potential for all three sizes was less 

than ± 30 mV with AL 50 (-18 mV) being less stable than AL 120 (-26 mV).  The 

concentration of the particles in solution may have contributed to the instability of the 

particles because as the solution becomes more turbid, the zeta potential decreases (Zeta 

Potential, 2008:8).  Table 6 outlines the range of zeta potentials and the corresponding 

colloid stability.  The zeta potential and electrophoretic mobility of particles suspended in 

exposure media could not be measured because the high salt concentrations of the RPMI 

cause corrosion of the sample chamber electrodes. 
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Table 6.  Zeta Potential and Colloid Behavior (Adapted from ASTM Std D4187-82) 

Zeta Potential (mV) 
 

Stability Behavior of the Colloid 
 

from 0 to ±5 Rapid coagulation or flocculation 
from ±10 to ±30 Incipient instability 
from ±30 to ±40 Moderate stability 
from ±40 to ±60 Good stability 
more than ±61 Excellent stability 

 

 

 4.5.2  Characterization of AL NPs in Powder 

 Data on the size of the AL NPs in dry powder form was adopted from Wagner’s 

article “Cellular Interaction of Different Forms of Aluminum Nanoparticles in Rat 

Alveolar Macrophages” because the particles used in this study came from the same jars 

used in his research (see Table 7).   

 
Table 7.  Characterization of AL NP Powder (adapted from Wagner, 2007:7354) 

 
Particle and Size Provided by 

Manufacturer (nm) 
 

Mean Diameter (nm) Standard Deviation (nm) 

AL 50 nm 40.2 ± 17.3 
AL 80 nm 67.2 ± 26.3 

AL 120 nm 110 ± 34.1 
Mean diameter and standard deviation determined by measuring 100 particles using TEM. 

 

 The mean particle diameter was 8 – 20 percent smaller than the size claimed by 

the manufacturer, NovaCentrix™.  However, the manufacturer’s size fell within the 

standard deviation determined by Wagner’s research.  NovaCentrix™ classifies these 

particles as spherical and crystalline (see Figure 15). 
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Figure 15:  Transmission Electron Microscopy of Aluminum Nanoparticles.  Nanoparticles were suspended in distilled 

water and deposited onto formvar/carbon-coated TEM grids.  A)  AL 50 nm, B)  AL 80 nm, C)  AL 120 nm.   
Photo courtesy of AFRL/RHPB 

 

 Data on particle surface area and surface chemistry were obtained from the 

manufacturer, NovaCentrix™.  The data from NovaCentrix™ was validated by surface 

chemistry analysis performed using XRD and combustion in an elemental furnace.  

Surface chemistry analysis was performed to determine if the nanoparticles had oxidized 

since the 2005 purchase.  Per Dr. Schrand, the oxide coating created by the manufacturer 

had not increased (personal communication, 30 November 2007).  See Table 8 for 

surface area and oxide coating information. 

Table 8.  Surface Area and Oxide Coating (adapted from NovaCentrix™, 2007) 
Particle and Size Provided by 

Manufacturer (nm) 

Mean Surface Area  
Provided by 

Manufacturer (m2/g) 

Thickness of Oxide 
Coating (nm)* 

AL 50 nm 44 1 – 2 
AL 80 nm 28 1.5 – 2.5 

AL 120 nm 18 1.5 – 2.5 
Mean diameter, surface area, and oxide coating characterized by NovaCentrix™ Inc. using XRD, 
TEM, and BET.  AL NPs manufactured with oxide coating to minimize spontaneous combustion. 

NovaCentrix™ characterized the nanoparticles as spherical and crystalline.  This was confirmed by  
Wagner, 2007:7354 using TEM.  *Results from University of Dayton show no additional oxidation. 
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V.  Conclusions and Future Research Considerations 
 

5.1  Overview 

 This chapter provides a discussion of the results of this study, suggests 

methodology improvements, recommends additional research on the effects of aluminum 

nanoparticles on human skin, and discusses future occupational health concerns. 

5.2  Discussion 

 Results of the experiments performed to assess keratinocyte viability and 

interleukin response are summarized below.  The cell morphology experiments and the 

AL NP characterization are also discussed in this section.   

 5.2.1  Cell Viability 

 Table 9 is a summary of the first and second research objectives of this study, the 

statistical tests used to validate the experimental data, and the results of these tests.  

 

Table 9.  Summary of Research Objectives 1 and 2  
 
Research Objective 1  Are AL NPs (50, 80, and 120 nm) toxic to human keratinocytes? 
 
Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 100% (zero control) 
H1:  µ ≠ 100% 

Necrosis - LDH:  all results p value > 0.05 
 
Cell Proliferation - MTS:  all results p value > 0.05 
 

 
Research Objective 2  Do AL NPs induce reactive oxygen species? 
 
Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 1 (zero control) 
H1:  µ ≠ 1 
 
 

Oxidative Stress - ROS:  all results p value > 0.05 
 
 

 

 Cell membrane integrity was evaluated by quantifying a colorimetric reaction to 

measure the concentration of LDH, a component of the cytoplasm of eukaryotic cells, to 

determine if the cell membrane had been compromised.  The colorimetric reaction occurs 
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when LDH reacts with an assay enzyme that converts a dye, resazurin, to resorufin 

(TB306, 2007:2).  All experimental results were compared to the results of a zero control.  

The comparison of the experimental data to the zero control data proved that the data was 

not statistically significant; therefore, AL NPs did not compromise the cell membranes of 

the keratinocytes. 

 Cell metabolic activity was evaluated by quantifying a colorimetric reaction to 

measure the conversion of MTS to formazan, which is a result of mitochondrial function.  

Reduced mitochondrial function indicates that the cells were not proliferating as the 

mitochondria in healthy, living cells convert MTS to formazan (TB169, 2005:1).  All 

experimental results were compared to the results of a zero control.  The comparison of 

the experimental data to the zero control data proved that the data was not statistically 

significant, therefore, AL NPs did not reduce cell proliferation. 

 The answer to research objective 1 is no.  Cell membrane integrity and metabolic 

activity were the parameters used to assess keratinocyte viability after exposure to AL 

NPs (50, 80, and 120 nm) at concentrations ranging from 10 to 10,000 μg/mL for 24 

hours.  The comparison of the LDH and MTS experimental data to the zero control 

proved that the experimental data was not statistically significant; therefore, AL NPs, 

with the charge and surface chemistry of the particles used in this study, did not cause 

cell necrosis nor reduce cell proliferation. 

 Oxidative stress occurs when the concentration of the ROS generated by the cell, 

exceeds the cell’s antioxidant defenses (Xia and others, 2006:1795).  Cell damage occurs 

when ROS are converted to hydroxyl radicals, which can cause cell necrosis or induce 
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apoptosis by damaging cell DNA, cell organelles, and cell membranes.  The cell damage 

caused by the ROS may induce inflammation in surrounding tissue.   

 The answer for research objective 2 is no.  Keratinocyte generation of the ROS 

during a 24-hour exposure to AL NPs (50, 80, and 120 nm) at concentrations 10, 100, 

500, 1000, and 2000 μg/mL was not statistically significant.  The statistical analysis of 

the data by AL NP size, by exposure time, and by concentration of the dosing stock 

showed that these were not factors in ROS generation.  AL NPs, with the charge and 

surface chemistry of the particles used in this study, did not induce ROS generation. 

 5.2.2  Cell Morphology 

 Changes to keratinocyte morphology were assessed to determine if AL NPs at 

concentrations > 2000 µg/mL were the cause of reduced cell proliferation.  Keratinocytes 

were dosed with like concentrations of talc and changes in cell growth were compared 

with a zero control.  An MTS experiment was performed to confirm reduced cell 

proliferation.  The results of this experiment show that the reduction in cell proliferation 

was not caused by the AL NPs, but by the turbidity of the dosing stock.  

 5.2.3  Interleukin Response 

 Concentrations of IL-1α and -8, expressed after 24-hour exposure to AL NPs (50, 

80, and 120 nm) at concentrations 10, 100, 500, 1000, and 2000 μg/mL and LPS, was 

quantified using colorimetric ELISA immunoassays.  Table 10 is a summary of the third 

and fourth research objectives of this study, the statistical tests used to validate the 

experimental data, and the results of these tests.  
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Table 10.  Summary of Research Objectives 3 and 4 
 
Research Objective 3  Do AL NPs induce an inflammatory response in keratinocytes? 
 
 
 
 
 
 
 
Zero Control F-test:  95% confidence limit 
Ho:  s1

2 = s2
2;    s1

2 = zero control w/ LPS; s2
2 = zero control w/o LPS 

H1:  s1
2 ≠ s2

2 

 
Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 6.24 pg/mL (zero control) 
H1:  µ ≠ 6.24 pg/mL  
 

AL NP Size (um) F-test:  95% confidence limit                                       
Ho:  s1

2 = s2
2 = s3

2; s1
2 = AL 50, s2

2 = AL 80, and s3
2 = AL 120  

H1:  s1
2 ≠ s2

2 ≠ s3
2 

 
Dosing Stock Conc. (µg/ml)                                                                 
F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2 = s4
2; s1

2 = 10, s2
2 = 100, s3

2 = 1000, and s4
2 = 2000 

H1:  s1
2 ≠ s2

2 ≠ s3
2 ≠ s4

2;  

Necrosis - LDH:  all results p value > 0.05  
Oxidative Stress - ROS:   
AL 120 p value ≤ 0.05, oxidative stress occurred 
AL 50 and AL 80 p value > 0.05 
 
Proinflammatory Cytokine IL-1α:   
 
Zero Control F-test:  FCalc < FCritical,  No statistical 
difference  
 
 
Student’s t-test:  p value ≤ 0.05, sample data 
statistically different from zero control 
 
 
AL NP Size F-test:  FCalc < FCritical,  No statistical 
difference  
 
 
Dosing Stock F-test:  FCalc > FCritical,  Statistically 
different 
 

 
Research Objective 4  Can AL NPs be classified as a skin irritant or sensitizer? 
 
 
 
Zero Control F-test:  95% confidence limit 
Ho:  s1

2 = s2
2; s1

2 = zero control w/ LPS and s2
2 = zero control w/o LPS 

H1:  s1
2 ≠ s2

2 

 
Student’s t-test:  Statistical significance, p value ≤ 0.05 
Ho:  µ = 192 pg/mL (zero control) 
H1:  µ ≠ 192 pg/mL 
 
 
AL NP Size (nm) F-test:  95% confidence limit                
Ho:  s1

2 = s2
2 = s3

2; s1
2 = AL 50, s2

2 = AL 80, and s3
2 = AL 120  

H1:  s1
2 ≠ s2

2 ≠ s3
2 

 
Dosing Stock Conc. (µg/ml) F-test:  95% confidence limit 
Ho:  s1

2 = s2
2 = s3

2 = s4
2; s1

2 = 10, s2
2 = 100, s3

2 = 1000, and s4
2 = 2000 

H1:  s1
2 ≠ s2

2 ≠ s3
2 ≠ s4

2;  

Neutrophil and T-lymphocyte attractant IL-8:   
 
Zero Control F-test:  FCalc > FCritical,  Statistically 
different 
 
 
Student’s t-test:  p value ≤ 0.05, sample data 
statistically different from zero control 
 
 
 
AL NP Size F-test:  FCalc < FCritical,  No statistical 
difference  
 
 
Dosing Stock F-test:  FCalc > FCritical,  Statistically 
different 
 
 
Ratio of IL-8 to IL-1α 
 
AL NP Size F-test:  FCalc < FCritical,  No statistical 
difference  
 
 
Dosing Stock F-test:  FCalc > FCritical,  Statistically 
different 
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 IL-1α is synthesized by the mitochondria (Coquette and others, 1999:875) and IL-

8 is synthesized when the nuclear factor-kappa beta (NF-Kβ) is activated by protein 

kinase C (Chabot-Fletcher and others, 1994:509).  IL-1α initiates the inflammation 

process when released from the cells.  IL-1α may be released when the cell membrane is 

compromised or when the cell is stimulated.  Since the LDH experiments proved that the 

AL NPs did not cause cell membrane rupture, the concentrations of IL-1α measured 

during this experiment were expressed by stimulated keratinocytes.  The IL-1α 

concentrations, expressed by keratinocytes dosed with AL 50 and AL 80 at the 

concentration of 100 µg/mL, were 5.70 and 9.58 pg/mL, respectively.  AL 120 at 1000 

µg/mL produced 5.57 pg/mL, which was slightly larger than the 4.27 pg/mL expressed 

after exposure to AL 120 at 100 µg/mL.  There was no significant difference between the 

IL-1α concentrations expressed by size, however, there was a significant difference 

between the IL-1α concentrations expressed by concentration of the dosing stock.  

Therefore, keratinocyte expression of IL-1α was dose dependent vs. nanoparticle size 

dependent.  The lower concentrations of IL-1α expressed by keratinocytes dosed with 

2000 µg/mL were likely caused by the turbidity of the dosing stock.  The turbidity of the 

dosing stock may have reduced mitochondrial function, or blocked the LPS from 

reaching and stimulating the cells.  All IL-1α concentrations released in this experiment, 

except for AL 80 at 100 µg/mL, fall just below the range of IL-1α concentrations 

measured in the in vitro experiments performed by Coquette and others.  Per Coquette 

and others, keratinocytes dosed with sensitizer agents (0.414 – 14.7 mg/mL) expressed 

IL-1α in the range of 6 to 35 pg/mL, and dosed with irritant agents (1.62 – 36.6 mg/mL) 

expressed IL-1α in the range of 46.5 to 236 pg/mL (Coquette and others, 2003:314-316).   
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 The answer for research objective 3 is no.  Based on the concentrations of LDH, 

ROS, and IL-1α measured in this research, the keratinocytes did not exhibit an 

inflammatory response. 

 In addition to initiating the inflammation process, IL-1α stimulates the release of 

secondary mediators, including IL-8.  IL-8 is a chemotactic that signals neutrophils and 

T-lymphocytes to the cell to begin phagocytosis.  The relatively low concentration of IL-

8 measured in the without-LPS zero control indicates that LPS, in combination with IL-

1α, stimulated keratinocyte release of IL-8.  Keratinocytes exposed to the AL NP dosing 

stock of 100 µg/mL produced the highest concentration of IL-8.  AL 50, AL 80, and AL 

120, produced extracellular concentrations at 495, 478, and 427 pg/mL, respectively.  

There was no significant difference between the IL-8 concentrations expressed by 

nanoparticle size, however, there was a significant difference between the IL-8 

concentrations expressed by concentration of the dosing stock.  Therefore, keratinocyte 

expression of IL-8 was dose dependent vs. nanoparticle size dependent.  The low 

concentration of IL-8 expressed by keratinocytes dosed to 2000 µg/mL was likely due to 

the decrease in IL-1α concentrations.  The IL-8 concentrations released by keratinocytes 

exposed to AL 50, AL 80, and AL 120 at 100 and 1000 µg/mL fall within the range of 

IL-8 concentrations measured in the in vitro experiments performed by Coquette and 

others.  Per Coquette and others, keratinocytes dosed with sensitizer agents (0.414 – 14.7 

mg/mL) expressed IL-8 in the range of 164 to 495 pg/mL, and dosed with irritant agents 

(1.62 – 36.6 mg/mL) expressed IL-8 in the range of 21 to 168 pg/mL (Coquette and 

others, 2003:314-316).   
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 The ratio of IL-8 to IL-1α ranged from 24.5 to 100.2.  AL NP dosing 

concentrations of 100 µg/mL produced ratios ranging from 86.8 to 100.2, with AL 120 

producing the highest ratio.  The ratio for AL 80 at 10 µg/mL was 70.8, larger than the 

ratio produced at 100µg/mL, and the ratio for AL 50 at 1000 µg/ml was 69.9, larger than 

the ratio produced by AL 80 at 100 µg/mL.  The ratios of IL-8 to IL-1α concentrations 

reported by Coquette and others ranged from 8.4 to 41.0 for sensitizers and 0.2 to 0.7 for 

irritants (Coquette and others, 2003:314-316).  Despite the higher ratio produced by the 

AL 50 and AL 80, statistical analysis of the ratios show that the ratios were dose 

dependent vs. nanoparticle size dependent. 

 The answer for research objective 4 is yes.  Based on the concentrations of IL-1α, 

IL-8, and the corresponding ratios AL NP can be categorized as a skin sensitizer.  This 

conclusion is also supported by the fact that aluminum is considered a mild, but rare 

sensitizer that causes SRD in susceptible populations.   

 5.2.4  Nanoparticle Characterization 

 Characterization of nanoparticle size, its zeta potential, its electrophoretic 

mobility in solution, and dry powder surface chemistry was performed using DLS, LDV, 

and XRD.  AL NPs suspended for 24 hours in exposure media and in distilled water, 

agglomerated and formed particles that were greater than 100 nm.  The particle charge 

and surface chemistry of the AL NPs used in this study did not make the particles toxic to 

human keratinocytes. 

5.3  Suggested Methodology Improvements 

 There are several suggestions that could improve the methodologies used in this 

research and lend strength to the results of this study.  These suggestions include (1) time 
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and concentration studies to identify the optimal concentration of LPS to use in the 

interleukin experiments; (2) time studies to determine if IL-1α and IL-8 expression 

occurs soon after exposure or increases/decreases over time; (3) keratinocyte uptake of 

AL NPs; (4) the use of nanosized materials of known sensitizers and irritants as controls 

to compare against AL NP induced interleukin expression; and (5) the replacement of the 

HaCaT keratinocyte model with a skin cell model that includes Langerhans cells for 

HLA-DR imaging.  

 The concentration of LPS used in this study (25 µg/mL for a 24-hour exposure) 

was selected based on published studies that used 100 µg/mL for a 6-hour exposure.  This 

rationale may not have ensured the maximum expression of IL-1α and IL-8.  Time and 

concentration studies would have identified the concentration of LPS needed to induce 

optimal interleukin expression during the 24-hour exposure period.   

 Performing time studies on keratinocyte extracellular expression of IL-1α and IL-

8 may show when, after AL NP exposure, cells may become susceptible to SRD.  The 

experiments performed in this study do not prove when, during the 24-hour exposure, 

cells may have been more susceptible to an SRD agent.  In the time studies performed by 

Kristensen and others, keratinocyte expression of IL-8 peaked at 4 hours, decreasing to 

its lowest concentration at 10 hours, and rising again until at 24 hours the concentration is 

roughly 50 percent of concentration seen at 4 hours. 

 Keratinocyte uptake of AL NPs was not performed during this study.  

Transmission electron microscopy imagining of cells after dosing and incubation should 

be performed to determine if the AL NPs adhere to the outside of the cell membrane or 

migrate through the membrane to interact with the organelles. 
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 In this study, there were no experiments performed using known ICD or SRD 

agents.  Dosing keratinocytes at concentrations greater than and less than cytotoxic doses, 

with nanosized materials of known sensitizers (e.g. nickel) and irritants (e.g. copper), and 

quantifying expressed IL-1α and IL-8 using the R & D Systems®, Inc. assay kits would 

help validate the results of this research. 

 The HaCaT cell line used in this study did not contain Langerhans cells, which 

are dendritic, or immune system cells that reside in the epidermis.  HLA-DR is a major 

histocompatibility complex, MHC class II, cell surface receptor found on immune system 

cells that aid or suppress recruitment of T-lymphocytes.  Confocal and electron 

microscopy show that Langerhans cells exposed to sensitizer agents internalized HLA-

DR molecules in lysosomes near the nucleus.  When exposed to an irritant agent, the 

Langerhans cells internalized the HLA-DR in prelysosomes near the cell membrane (Ale 

and Maibach, 2004:246).  This imaging would validate the interleukin response of the 

keratinocytes and confirm that AL NPs induced a sensitizer response in the epidermis. 

5.4  Recommended Additional Research 

 Concerns regarding dermal exposure to nanoparticles include direct cell toxicity, 

accumulation in the skin, metabolism of particles into smaller components, or increased 

particle toxicity after ultra violet irradiation (Tsuji and others, 2006:44).  Accumulation 

and absorption into the skin occur through any of the following pathways:  between the 

intercellular lipid pathway in the stratum corneum, by cellular uptake, or through the hair 

follicle or sweat ducts (Monteiro-Riviere and Inman, 2005:1071).  Figure 16 illustrates 

the approach used by the Biological Interaction of Nanoparticles (BIN) team at the Air 

Force Research Laboratory to assess the cytotoxicity and cellular interaction of 
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nanoparticles that have an Air Force application.  The highlighted bullets represent the 

work completed during this study.  As seen in the illustration, there is a significant 

amount of research needed in order to assess the biological effects of AL NPs on human 

skin. 
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Figure 16.  Biological Interaction of Nanoparticles.  AFRL/RHBP, BIN Team Approach.   
Illustration provided by Dr. Saber Hussain.  Highlights indicate research performed during this study. 

 

5.5  Occupational Health Challenges 

 Proponents and skeptics of nanotechnology agree with the opinion that the full 

potential of nanotechnology must also address any safety, health, and environmental 

issues (Nel and others, 2006:622).  To this end, the Nanotechnology Environmental and 

Health Implications (NEHI) Working Group defined five research categories to indentify 

and prioritize research needs, and to consolidate overlapping requirements.  The five 

categories are:  (1) instrumentation, metrology, and analytical methods; (2) nanomaterials 

and human health; (3) nanomaterials and the environment; (4) health and environmental 
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exposure assessment; and (5) risk management methods.  Each of these five categories 

touches some aspect of the occupational setting, the potential impact that nanotechnology 

may have on the worker, and addresses the potential pathways of nanoparticles, from 

synthesis to biological system (see Figure 17).  
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Figure 17.  Potential Nanomaterial Release and Exposure.  
(Adapted from Tsuji, 2006:48) 

 

 Worker exposure to nanoparticles may occur during nanoparticle synthesis, from 

degradation of products containing nanoparticles (bound nanoparticles), from the 

manufacture of nanoparticles, or the use of nanoparticles in maintenance/repair processes.  

“In the absence of scientific clarity about the potential health effects of occupational 

exposure to nanoparticles, a need exists for guidance in decision making about hazards, 

risks, and controls” (Schulte and Salamanca-Buentello, 2007:5).  For the industrial 

hygienist or safety professional, the list of unanswered questions addressing the hazards 

of nanotechnology poses a unique challenge (see Table 11).  The knowledge list in 

category 1 is based on the current generation of engineered nanoparticles, and existing 

knowledge of airborne ultrafine particles and gases.  Category 2 summarizes the 

questions being addressed with current research.  Category 3 refers to existing assessment 

59 



and control knowledge that might be ignored when assessing worker risk.  Proprietary 

information is listed under this category because the industrial hygienist should be aware 

that it could be a source of information when assessing occupational health hazards.  

Finally, category 4 is a brief list of possible future scenarios.   

Table 11.  Summary of Knowledge About Nanoparticles  
(adapted from Schulte and Salamanca-Buentello, 2007:7) 

Knowledge Awareness 
 

Content of Knowledge 
 

Category 1. 
What we know we know 

Health effects of ultrafine particles, air pollution and fibers 
How to control ultrafine in workplace 
Importance of size, surface area, and surface chemistry of nanoparticles 
Health effects of some nanoparticles in animals 
Movement of some nanoparticles along the olfactory nerve in animals 
 

Category 2. 
What we know we do not know 

Measurement and characterization techniques 
Hazards of newly engineered particles 
Extent of translocation in body 
Nanoparticle interaction with workplace contaminants 
Importance of dermal exposure 
Health effects in workers 
Risk to workers 
Effectiveness of controls, medical screening, and biological monitoring 
Risk to worker’s families 
 

Category 3. 
What we do not know we know 

Extensive experience available in controlling hazardous substances that may  
     be applicable to nanoparticles (radiation, biologicals, pharmaceuticals,  
     grain and mineral dusts) 
Lessons from previous “miracle” materials (asbestos) 
Proprietary information 
 

Category 4.  
What we do not know we do not 
know 

Unanticipated new hazards 
Unanticipated new controls 
Wrong assumptions about hazards and controls (lack of awareness) 

  

 Addressing the uncertainty of occupational risks posed by macrosized materials 

usually involves a single risk assessment and the implementation of a single 

management/control strategy.  Because any of the various characteristics of a 

nanoparticle may pose an occupational health hazard, the industrial hygienist should 

consider performing a risk assessment for each type of particle, and on each characteristic 

of the nanoparticle.  Figure 18 illustrates some of the criteria that an industrial hygienist 

should address when performing a nanoparticle risk assessment.  Regardless of the level 
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of knowledge, the ultimate ethical requirement that an industrial hygienist must adhere to 

is to accurately portray the risk and the hazard, and to not over or understate it (Schulte 

and Salamanca-Buentello, 2007:8).  As the knowledge and understanding of 

nanotechnology grows, the potential hazards and risks to workers will change over time, 

and may require periodic risk assessments to ensure that appropriate controls are in place.   

 
Hazard Identification

 
● Chemical composition 
● Particle size 
● Structure/properties 
● Coating 

Toxicity Assessment
 

● Uptake, distribution, 
metabolism, excretion 
● Reactivity 
● Dosimetry 

Exposure Assessment 
 

● Particle behavior 
● Product uses, durability 
● Receptor 
● Routes of entry 

Risk Characterization
 

● Likelihood of effects 
● Nature of effects 
● Effectiveness of controls 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Risk Assessment Framework. 
(Adapted from Tsuji, 2006:48) 

 

 Since the dermal health risk posed by nanoparticles, in general, and specifically 

AL NPs, is incomplete, care must be taken when selecting and implementing 

occupational skin exposure controls.  Current research indicates that nanoparticles may 

behave in the same manner as ultrafine particles, and, in the interim, nanoparticles should 

be given the same level of concern (Schulte and Salamanca-Buentello, 2007:9).  

Although, the health hazards posed by ultrafine particles are a function of toxicity and 

length of exposure, and not based on particle characteristics, adopting controls used for 

ultrafine particles will provide workers with some level protection against nanoparticles. 
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5.6  Conclusion 

 In summary, AL NPs with the charge and surface chemistry of the particles used 

in this study, did not induce cell membrane leakage, reduce cell proliferation, generate 

ROS, or cause inflammation of keratinocytes.  Based on the results of this research, AL 

NPs can be classified as a sensitizer agent.  Since sensitization has been identified in 

persons exposed to aluminum in deodorant, vaccines, and toothpaste, it is likely caused 

by the aluminum content vs. the size of the particles.  Another argument that the 

aluminum content is likely the cause of sensitization is supported by the fact that 

keratinocyte expression of the IL-8 concentrations was dependent on the concentration of 

the dosing stock vs. the size of the nanoparticles.  Until further information is available 

on the biological interaction of AL NPs and human skin, care should be taken to 

minimize worker contact with AL NPs. 

 With the rapid adoption of nanotechnology and the lack of data about its health 

impacts, employers must accurately communicate potential health hazards and risks to 

their workers, and take precautionary measures to control the risks.  Despite the lack of 

knowledge on the hazards of nanoparticles, industrial hygienists have the experience 

needed to perform interim risks assessments.  These risk assessment can then be used to 

assist employers with the selection and implementation of adequate controls, and to help 

communicate these risks to workers in a manner that makes the risks seem reasonable and 

acceptable. 
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Appendix A:  Passaging Cells 

Procedure used to culture and sustain HaCaT cell line. 
 

1.  Vacuum excess liquid from cell culture flasks. 

2.  Wash cells with 5 mL of 1X PBS. 

3.  Vacuum liquid from flask. 

4.  Add 2.5 mL of 1 percent trypsin. 

5.  Incubate for 5 minutes at 37°C. 

6.  Add 20 mL of growth media to new cell culture flask. 

7.  Remove flask from incubator and add 10 mL of growth media. 

8.  Flush with pipette to create a single cell suspension. 

9.  Seed cell culture flask from step 6 with 3.5 mL of lysed cells.  At this point, follow 
     steps outline in Appendix B, Counting and Plating Cells with left over cell suspension.  
 
10.  Incubate flask at 37°C for 48 hours, until 90-100 percent confluent. 
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Appendix B:  Counting and Dosing Cells 

Procedure used to transfer an adequate number of keratinocytes to well plates. 
 

1.  After passaging (day 3), add 10 mL of growth media and the remainder of all cells  
     from flasks to a 50 mL conical tube. 
 
2.  Pipette the solution up and down to create a single cell suspension. 
 
3.  Pipette 10 µL of the suspension on to a hemocytometer and add cover slip. 
 
4.  Place the hemocytometer under microscope and count all cells in the 4-corner grid. 
 
5.  Divide the total number of cells by 4 and then divide by 0.1 to estimate the cells/μL.   
  
 Example:  (127 cells ÷ 4) ÷ 0.1 = 318 cells per μL of cell suspension 
 
6.  Use the following equation to calculate the volume of cell suspension and cell growth  
      media needed to seed each well.   
 
 Example:  50,000 (cells per well) ÷ 318 cells/μL = 157 cells/well 
  
                  (96 wells/plate * 3 plates) * 0.2 mL per well * 157 cells/well  
 
    = 9.0 mL of cell suspension needed 
  
       (96 wells/plate * 3 plates) * 0.2 mL per well  
 
    = 57.6 mL total volume needed  
 
      57.6 mL – 9 mL = 48.6 mL cell growth media 
 
7.  Pipette required volumes of cell suspension and growth media into a sterile beaker. 
     Pipette up and down to create single cell suspension. 
 
8.  Pipette the volume of the cell suspension into well plates.  Use 96-well plate  
     for assay tests and 6-well plate for morphology experiments.  Incubate plates for 24  
     hours at 37°C. 
 
9.  After 24 hours of incubation, remove media from wells.  Dose four wells with    
     nanoparticle dosing stock and exposure media.  Calculate the appropriate number of  
     wells to act as controls (do not dose with AL NPs), add 200 µL of exposure media,  
     and incubate plate for 24 hours at 37°C. 
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Appendix C:  LDH Assay 

Procedure used to determine if exposure to AL NPs cause keratinocyte cell membrane 
leakage by measuring the concentration of lactate dehydrogenase.  These instructions are 
appropriate for the Promega, Cytotoxic-One™, Homogeneous Membrane Integrity 
Assay, TB306. 
 

1.  Follow Appendix B for counting, plating, and dosing cells in 96-well plate.  Perform  
     this assay experiment after 24-hour exposure of keratinocytes to nanoparticle stock.   
 
2.  Prepare LDH positive control:  Add 1 μL of positive control (G181A) to 5 mL of 1X  
     PBS.  Shelf life for LDH positive control is 3 days. 
 
3.  Aliquot 50 μL of supernate from each well and transfer to a clean 96-well plate, leave  
     3 wells empty for positive control.  Add 50 µL of LDH positive control to the 3 wells  
     empty wells  
 
4.  Add 50 μL of LDH substrate solution to each well.  To prepare LDH substrate  
     solution, add 11 mL of assay buffer (G790B) to bottle of substrate mix (G179A).   
     Gently, tap and slide plate from side-to-side to ensure substrate solution is well mixed  
     with cell supernate. 
 
5.  Incubate plate, in the dark, for 10 minutes. 
 
6.  Add 25 μL of stop solution (G791A) to each well. 
 
7.  Measure fluorescence of color reaction in each well using a spectrofluorometer to 
     excite the supernate at 560 nm and read emission at 590 nm. 
 
8.  Percent LDH leakage is compared to the blank control (zero nanoparticle).  Blank  
     control represents zero leakage.  Results are calculated by [F]test/[F]control x 100.  
     [F]test is the fluorescence of test sample and [F]control is the fluorescence of the control  
     sample. 
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Appendix D:  MTS Assay 

Procedure used to determine the effects of AL NPs on keratinocyte cell 
growth/proliferation.  Living cells convert MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) to formazan.  The 
production of formazan is proportional to the number of living cells. 
 

1.  Follow Appendix B for counting, plating, and dosing cells in 96-well plate.  Perform  
     this assay experiment after 24-hour exposure of keratinocytes to nanoparticle stock.   
     Remove exposure media and nanoparticle dosing stock from wells. 
 
2.  Wash wells 3 times with 200 μL of 1X PBS. 

3.  Add 100 μL exposure media to each well.  

4.  Add 20 μL of MTS reagent to each well.  

5.  Incubate at 37°C for 4 hours until the control wells change from yellow to red.  

6.  Use spectrophotometer to read light absorbance at 490 nm. 

7.  Percent MTS reduction is compared to the blank control (zero nanoparticle).  Blank  
     control represents zero reduction.  Results are calculated by [A]test/[A]control x 100.  
     [A]test is the absorbance test sample and [A]control is the absorbance of the control  
     sample. 
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Appendix E:  ROS Assay 

Procedure used to quantify all reactive oxygen species produced by keratinocytes 
undergoing oxidative stress from exposure to AL NPs. 
 
As described in Wang H. and J.A. Joseph.  “Quantifying Cellular Oxidative Stress by 
Dichlorofluorescein Assay Using Microplate Reader”, Free Radical Biology and 
Medicine, 27(5/6): 612-616 (September 1999). 
 

1.  Follow Appendix B for counting and plating cells in 96-well plate, do not dose  
     keratinocytes with AL NPs until after adding fluorescent probe.  Use light blocking  
     plate and seed wells for a 150K cell density.  Do not perform step 9 of Appendix B. 
 
2.  Remove growth media from wells.  Add 200 μL of 100 μM DCFH-DA* to each well  
     and incubate at room temperature for 30 minutes.  Keep plate out of the light. 
 
     *Prepare 10 mM DCFH-DA (2’,7’-dichlorofluorescein diacetate):   
 Weigh 48 mg of DCFH-DA and add to 10 mL of DMSO (dimethly sulfoxide).  
 Pipette 50 μL into 5 mL of growth media to create 100 μM DCFH-DA. 
 
3.  Remove DCFH-DA from wells.   
 
4.  Add 200 μL of AL NP suspension or positive control** to each well.  Three wells for  
     each concentration.  Use media that does not contain phenol red in AL NP suspension. 
 
     ** Prepare positive control: 
 Pipette 114 uL of 30 percent H2O2 into 10 mL 1X PBS = 100 mM H2O2 

 Use positive control stock and cell exposure media to prepare standard  
             concentrations of 10 – 2000 uM. 
 
5.  Cover plate with foil and incubate at 37°C for appropriate exposure intervals up to  
     24 hours. 
 
6.  At appropriate time intervals (0, 1, 2, 4, 6, 24-hours) measure fluorescence of the cells  
     in each well using a spectrofluorometer to excite the cells at 485 nm and read emission  
     at 530 nm.  ROS fold increase is calculated by [F]test/[F]control.  [F]test is the  
     fluorescence of test sample and [F]control is the fluorescence of the control sample. 

67 



Appendix F:  IL-1α Assay 

Procedure used to quantify the concentration of human IL-1α expressed by keratinocytes 
after exposure to AL NPs.   
 

1.  Follow Appendix B for counting, plating, and dosing cells in 6-well plate. 

2.  Perform this assay experiment after 24-hour exposure of keratinocytes to nanoparticle  
     stock.   
 
3.  Pipette cell supernate from each well and place in sterile, 15 mL conical tubes, one  
     tube for each well. 
 
4.  Place 15 mL tubes in centrifuge for 15 minutes (1200 rpm) or until the nanoparticles 
     settle to the bottom of the tube. 
 
5.  Follow instructions for Quantikine® Human IL-1α/IL-1F1 Immunoassay.  See Figure  
     19 for a summary of the assay procedures. 
 
6.  Use absorbance data for interleukin standards to generate a Four Parameter (4-PL)  
     Logistic Curve.  Calculate concentration of test samples using nonlinear regression  
     equation generated from the 4-PL curve. 
 
 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  Summary of IL-1α Assay Procedures 
Reprinted with permission from R & D Systems®, Inc., 

Quantikine® Human IL-1α/IL-1F1 Immunoassay, 
Catalog DLA50 (May 2007) 
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Appendix G:  IL-8 Assay 

Procedure used to quantify the concentration of human IL-8 expressed by keratinocytes  
after exposure to AL NPs.   
 

1.  Follow Appendix B for counting, plating, and dosing cells in 6-well plate. 

2.  Perform this assay experiment after 24-hour exposure of keratinocytes to nanoparticle  
     stock.   
 
3.  Pipette cell supernate from each well and place in sterile, 15 mL conical tubes, one  
     tube for each well. 
 
4.  Place 15 mL tubes in centrifuge for 15 minutes (1200 rpm) or until the nanoparticles 
     settle to the bottom of the tube. 
 
5.  Follow instructions for Quantikine® Human CXCL8/IL-8 Immunoassay.  See Figure  
     20 for a summary of the assay procedures. 
 
6.  Use absorbance data for interleukin standards to generate a Four Parameter (4-PL)  
     Logistic Curve.  Calculate concentration of test samples using nonlinear regression  
     equation generated from the 4-PL curve. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20.  Summary of IL-8 Assay Procedures, 
Reprinted with permission from R& D Systems®, Inc., 

Quantikine® Human CXCL8/IL-8 Immunoassay, 
Catalog D8000C (September 2007) 
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